首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  国内免费   11篇
儿科学   5篇
妇产科学   1篇
基础医学   15篇
口腔科学   1篇
临床医学   1篇
内科学   2篇
神经病学   5篇
特种医学   1篇
外科学   21篇
肿瘤学   12篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   11篇
  2003年   11篇
  2002年   3篇
  2000年   1篇
  1995年   1篇
排序方式: 共有64条查询结果,搜索用时 328 毫秒
31.
We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous‐end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS‐like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS‐like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. Hum Mutat 31:1059–1068, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
32.
Background: The effect of a single nucleotide polymorphism of the [mu]-opioid receptor at nucleotide position 118 (OPRM1:c.118A>G) was investigated on morphine-6-glucuronide (M6G)-induced analgesia and respiratory depression in a group of healthy volunteers.

Methods: Sixteen subjects of either sex received 0.4 mg/kg (n = 8) or 0.6 mg/kg M6G (n = 8). At regular time intervals, the isocapnic acute hypoxic ventilatory response, pain tolerance (derived from a transcutaneous electrical acute pain model), and arterial blood samples were obtained. Data acquisition continued for 14 h after drug infusion. Population pharmacokinetic-pharmacodynamic sigmoid Emax models were applied to the respiratory and pain data. All collected data were analyzed using the statistical program NONMEM (San Francisco, CA).

Results: Four of the subjects were OPRM1:c.118GA heterozygotes, and the remainder of the subjects were OPRM1:c.118AA homozygotes. M6G analgesia: In contrast to analgesic responses in OPRM1:c.118AA homozygotes, responses were small and inconsistent in OPRM1:c.118GA heterozygotes and best described by the function Effect(t) = baseline (P < 0.01 vs. OPRM1:c.118AA homozygotes). Emax and C50 values in heterozygotes equaled 0.55 +/- 0.18 (or a 55% increase in current above baseline) and 161 +/- 42 ng/ml, respectively. M6G-induced respiratory depression: For the acute hypoxic response, neither Emax nor C50 (value = 282 +/- 72 ng/ml) differed between genotypes.  相似文献   

33.
Naloxone Reversal of Buprenorphine-induced Respiratory Depression   总被引:1,自引:0,他引:1  
Background: The objective of this investigation was to examine the ability of the opioid antagonist naloxone to reverse respiratory depression produced by the [mu]-opioid analgesic, buprenorphine, in healthy volunteers. The studies were designed in light of the claims that buprenorphine is relatively resistant to the effects of naloxone.

Methods: In a first attempt, the effect of an intravenous bolus dose of 0.8 mg naloxone was assessed on 0.2 mg buprenorphine-induced respiratory depression. Next, the effect of increasing naloxone doses (0.5-7 mg, given over 30 min) on 0.2 mg buprenorphine-induced respiratory depression was tested. Subsequently, continuous naloxone infusions were applied to reverse respiratory depression from 0.2 and 0.4 mg buprenorphine. All doses are per 70 kg. Respiration was measured against a background of constant increased end-tidal carbon dioxide concentration.

Results: An intravenous naloxone dose of 0.8 mg had no effect on respiratory depression from buprenorphine. Increasing doses of naloxone given over 30 min produced full reversal of buprenorphine effect in the dose range of 2-4 mg naloxone. Further increasing the naloxone dose (doses of 5 mg or greater) caused a decline in reversal activity. Naloxone bolus doses of 2-3 mg, followed by a continuous infusion of 4 mg/h, caused full reversal within 40-60 min of both 0.2 and 0.4 mg buprenorphine-induced respiratory depression.  相似文献   

34.
35.
36.
Romberg R  Olofsen E  Sarton E  Teppema L  Dahan A 《Anesthesiology》2004,100(6):1622; author reply 1622-1622; author reply 1623
  相似文献   
37.
BACKGROUND: Since propofol and remifentanil are frequently combined for monitored anesthesia care, we examined the influence of the separate and combined administration of these agents on cardiorespiratory control and bispectral index in humans. METHODS: The effect of steady-state concentrations of remifentanil and propofol was assessed in 22 healthy male volunteer subjects. For each subject, measurements were obtained from experiments using remifentanil alone, propofol alone, and remifentanil plus propofol (measured arterial blood concentration range: propofol studies, 0-2.6 microg/ml; remifentanil studies, 0-2.0 ng/ml). Respiratory experiments consisted of ventilatory responses to three to eight increases in end-tidal Pco2 (Petco2). Invasive blood pressure, heart rate, and bispectral index were monitored concurrently. The nature of interaction was assessed by response surface modeling using a population approach with NONMEM. Values are population estimate plus or minus standard error. RESULTS: A total of 94 responses were obtained at various drug combinations. When given separately, remifentanil and propofol depressed cardiorespiratory variables in a dose-dependent fashion (resting V(i) : 12.6 +/- 3.3% and 27.7 +/- 3.5% depression at 1 microg/ml propofol and 1 ng/ml remifentanil, respectively; V(i) at fixed Petco of 55 mmHg: 44.3 +/- 3.9% and 57.7 +/- 3.5% depression at 1 microg/ml propofol and 1 ng/ml remifentanil, respectively; blood pressure: 9.9 +/- 1.8% and 3.7 +/- 1.1% depression at 1 microg/ml propofol and 1 ng/ml remifentanil, respectively). When given in combination, their effect on respiration was synergistic (greatest synergy observed for resting V(i)). The effects of both drugs on heart rate and blood pressure were modest, with additive interactions when combined. Over the dose range studied, remifentanil had no effect on bispectral index even when combined with propofol (inert interaction). CONCLUSIONS: These data show dose-dependent effects on respiration at relatively low concentrations of propofol and remifentanil. When combined, their effect on respiration is strikingly synergistic, resulting in severe respiratory depression.  相似文献   
38.
Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1)   总被引:2,自引:0,他引:2  
Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.  相似文献   
39.
40.
OBJECTIVE: We present a case of deafness in a preterm infant with several predisposing factors of an acquired hearing impairment that, however, turned out to have a genetic cause. We describe the severe postnatal course and review the relevant literature. DESIGN: Case report. SETTING: University-based tertiary neonatal intensive care unit. PATIENT: Preterm infant (gestational age, 26/37; wks). MEASUREMENTS AND MAIN RESULTS: A preterm infant exhibited hearing impairment after a complicated clinical course with pneumothoraces, a hemodynamically relevant patent ductus arteriosus, treatment with potentially ototoxic drugs, intraventricular hemorrhage, and periventricular leukomalacia. Despite the absence of a family history for deafness, genetic testing was performed. Surprisingly, genetic analysis revealed the presence of two compound heterozygous mutations in the patient's GJB2 gene as the cause for his early-onset nonsyndromic deafness. CONCLUSION: To elucidate the nature of a hearing disorder, it is worthwhile to consider a genetic cause, despite the fact that it may seem unlikely in a severely sick preterm infant with numerous risk factors for a postnatally acquired hearing impairment and without a positive family history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号