全文获取类型
收费全文 | 5717篇 |
免费 | 359篇 |
国内免费 | 41篇 |
专业分类
耳鼻咽喉 | 39篇 |
儿科学 | 159篇 |
妇产科学 | 64篇 |
基础医学 | 591篇 |
口腔科学 | 158篇 |
临床医学 | 435篇 |
内科学 | 1489篇 |
皮肤病学 | 145篇 |
神经病学 | 237篇 |
特种医学 | 191篇 |
外科学 | 1097篇 |
综合类 | 26篇 |
现状与发展 | 1篇 |
预防医学 | 226篇 |
眼科学 | 53篇 |
药学 | 436篇 |
中国医学 | 8篇 |
肿瘤学 | 762篇 |
出版年
2023年 | 70篇 |
2022年 | 151篇 |
2021年 | 226篇 |
2020年 | 134篇 |
2019年 | 184篇 |
2018年 | 228篇 |
2017年 | 182篇 |
2016年 | 165篇 |
2015年 | 170篇 |
2014年 | 211篇 |
2013年 | 228篇 |
2012年 | 383篇 |
2011年 | 396篇 |
2010年 | 200篇 |
2009年 | 157篇 |
2008年 | 250篇 |
2007年 | 272篇 |
2006年 | 250篇 |
2005年 | 262篇 |
2004年 | 216篇 |
2003年 | 234篇 |
2002年 | 223篇 |
2001年 | 109篇 |
2000年 | 89篇 |
1999年 | 88篇 |
1998年 | 56篇 |
1997年 | 35篇 |
1996年 | 37篇 |
1995年 | 38篇 |
1994年 | 32篇 |
1993年 | 22篇 |
1992年 | 73篇 |
1991年 | 39篇 |
1990年 | 72篇 |
1989年 | 63篇 |
1988年 | 55篇 |
1987年 | 66篇 |
1986年 | 72篇 |
1985年 | 60篇 |
1984年 | 34篇 |
1983年 | 35篇 |
1982年 | 16篇 |
1979年 | 23篇 |
1978年 | 13篇 |
1977年 | 14篇 |
1976年 | 14篇 |
1974年 | 15篇 |
1971年 | 21篇 |
1969年 | 16篇 |
1967年 | 13篇 |
排序方式: 共有6117条查询结果,搜索用时 31 毫秒
111.
Hikari Okita Yuna Kato Tatsuki Masuzawa Kosuke Arai Sayuri Takeo Kohei Sato Nobuyuki Mase Takanori Oyoshi Tetsuo Narumi 《RSC advances》2020,10(49):29373
Stereoselective and efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction. The synthetic isosteres can be used in Fmoc-based solid phase peptide synthesis, resulting in the preparation of the 14-mer RGG peptidomimetics containing an (E)-methylalkene or a (Z)-chloroalkene unit.An efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction.Glycylglycine (Gly-Gly) is the smallest dipeptide and has been synthesized by many approaches in the last 100 years.1 Due to its versatile nature and ready availability, glycylglycine has been used as a chemical probe2 and buffer3 in biochemical studies and also as a reagent which can enhance the solubility of overexpressed proteins.4 In addition to the utility of Gly-Gly itself, oligoglycine (oligo-Gly) motifs are notable for being more flexible and less-functionalized than any combination of other amino acids. These features are useful in bioconjugation strategies which link multiple biomolecules without interfering with the function of each biomolecule, allowing synthesis of bioconjugated artificial molecules including dimeric, multi-domain, and fusion proteins.5 The flexibility of oligo-Gly enables the formation of unusual secondary structures of peptides and proteins.6 Thus, the oligo-Gly motif can be found in the biologically important peptides and proteins such as Met/Leu-enkephalin ( and ), the C-terminus of ubiquitin , ctenidin,7 shepherin I,8 and DNA/RNA-binding proteins with repeated sequences related to the various physiological processes via protein–protein and protein–nucleic acids interactions.9 These proteins relate with gene expression, DNA damage signal and apoptosis, however, the detail effects of Gly-Gly with steric and electronic factors to these functions are unknown. Given the importance of oligo-Gly in various fields, non-hydrolyzable peptidomimetics of oligo-Gly could be attractive building blocks for the synthesis of novel bioconjugated molecules and complex peptidomimetics with improved chemical stability and functionality. For example, even the Gly-Gly dipeptide mimic with the tetra-substituted alkene unit replacing the Gly-Gly peptide bond has been shown to promote the β-hairpin formation, and is thus the smallest peptidomimetic that is known to control a peptide structure.10 There are two reports of the synthesis of Gly-Gly-type fluoroalkene dipeptide isosteres.11 However, the poor synthetic access to such molecules has hindered their application to the peptidomimetics. Our long-standing interest in the drug discovery with amide-to-alkene isosteric switching prompted this investigation into the stereoselective synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres.In this report, we describe the beginning of our oligo-Gly-based peptidomimetic study with the stereoselective synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres and their use in Fmoc-based solid phase peptide synthesis (SPPS). In the first application of isosteres of this type to access complex peptidomimetics, we synthesize 14-mer RGG peptidomimetics containing (E)-methylalkene or (Z)-chloroalkene unit as surrogates for a Gly-Gly peptide bond. These two isosteres were selected because the potentials of both isosteres have not been fully uncovered, though there are several promising examples.12,13 Since the carbonyl oxygen equivalents of those isosteres are similar in their size14 but differ in their electronic properties,15 comparative studies of these isosteres would have the advantage of exploring the role of peptide bonds in terms of their steric and electronic natures. This work also uncovered the unique ability of the Gly-Gly-type (Z)-chloroalkene isostere to induce β-turn structures in the almost unfoled peptides (Fig. 1).Open in a separate windowFig. 1Gly-Gly peptide and its alkene-type peptidomimetics.The main challenges in this study include the stereoselective formation of the (E)-methylalkene and (Z)-chloroalkene moieties as the surrogates of the Gly-Gly trans-peptide bond, together with the control of the olefine isomerization under the condition of the isostere synthesis and Fmoc-based SPPS. There are several synthetic approaches toward tri-substituted alkene-type isosteres, including the Overman rearrangement,13 the SN2′-type opening of alkenylaziridines,12a Cu-mediated CF3-coupling of vinyl iodide,16 and cross-couplings of vinyl stannane.17 Organocuprate-mediated reactions of α,β-unsaturated carbonyl compounds with γ-leaving group(s) are also powerful methods to produce tri-substituted alkene-type isosteres, and are particularly suitable for the stereoselective synthesis of (Z)-fluoroalkene18 and (Z)-chloroalkene isosteres.19The preparation of Gly-Gly-type alkene dipeptide isosteres was facilitated by the organocuprate-mediated SET reduction that was used in the stereoselective formation of the (E)-methylalkene and (Z)-chloroalkene moieties. Scheme 1 shows the synthesis of (E)-methylalkene isosteres (5). A Witting reaction of methacrolein (1) with ethyl (triphenylphosphoranylidene)acetate followed by epoxidation with m-CPBA afforded the alkenyl oxirane (2) which, treated with Gillman reagent (n-Bu2CuLi), produced the allylic alcohol (3) with high E-selectivity. A Mitsunobu reaction of 3 with Ns(Boc)NH and deprotection provided the Gly-Gly-type (E)-methylalkene dipeptide isostere 5 that can be applied to the Fmoc-based SPPS. All reactions leading to the synthesis of 5 were performed on a gram scale.Open in a separate windowScheme 1Synthesis of Gly-Gly-type (E)-methylalkene dipeptide isosteres (5).Synthesis of chloroalkene isostere (14) is shown in Scheme 2. Based on previous results for the successful, efficient synthesis of Val-Xaa-type chloroalkene isosteres,19c we assumed that a similar protocol would allow for the synthesis of 14. However, our attempts revealed that the Gly substrate used has different reactivity and selectivity compared to the other substrates, particularly in the SET reduction step. Consequently, Gly-specific reaction conditions are necessary. The nucleophilic addition of the lithium enolate of methyl dichloroacetate to the N-sulfinylaldimine (7), prepared from (±)-tert-butylsulfinamide (6) and paraformaldehyde and m-CPBA oxidation of 6 gave the N-tert-butylsulfonyl (Bus)-protected α,α-dichloro-β-amino ester (8). Precise control of the amount of DIBAL-H at low temperatures enables the partial reduction of 8, and this is followed by a Horner–Wadsworth–Emmons reaction to produce the corresponding (E)-enoate (9). Initial efforts to apply our established conditions for SET reduction with Me2CuLi identified the poor Z-selectivity of the reaction and also its propensity to form the α-methylated side products 11 and 12 (Open in a separate windowScheme 2Synthesis of Gly-Gly-type (Z)-chloroalkene dipeptide isosteres (14).Reactivity of (E)-enoate (9) with organocupratesa
Open in a separate windowaAll reactions were carried out at −78 °C for 30 min on a 0.25 mmol scale with 4 equiv. of organocuprates in the presence of metal salts.bYield is determined by 1H NMR analysis of the crude mixture utilizing mesitylene as an internal standard.cR = Me.dR = n-Bu.eR = sec-Bu.fR = tert-Bu.With these isosteres in hand, we explored their use in Fmoc-based SPPS for the preparation of peptidomimetics of the 14-mer RGG peptide derived from translocation in lipo-sarcoma/fused in sarcoma (TLS/FUS) related to the RNA processing (Schemes 3 and and44).20 Starting from the Rink Amide ChemMatrix resin, standard Fmoc-based SPPS with DIC/Oxyma for peptide couplings and 20% (v/v) piperidine/DMF for Fmoc removals were performed for the construction of the peptide resin (15). The synthesized isosteres were incorporated into the peptide-chain by HATU/DIPEA in DMF affording the peptide resins 16 and 18. For the synthesis of (E)-methylalkene-type peptidomimetic, deprotection of Ns group with thiophenol/K2CO3 in DMF and chain elongation followed by global deprotection with TFA/m-cresol/thioanisole/H2O (87.5/5/5/2.5, v/v/v/v) provided the desired (E)-methylalkene-type peptidomimetic (17). Synthesis of the (Z)-chloroalkene-type peptidomimetic (19) was achieved using standard conditions. NMR analysis of the purified peptidomimetics revealed that although (Z)-chloroalkene-type peptidomimetic (19) can be purified solely, a trace amount of olefin isomerized compounds of 17, possibly generated under the coupling, is observed as a side product and was difficult to remove from the desired product.21 Since we used a single coupling protocol with HATU for this study, optimization for the coupling without olefin isomerization is likely to be possible.Open in a separate windowScheme 3Synthesis of Gly-Gly-type (E)-methylalkene-type peptidomimetic (17).Open in a separate windowScheme 4Synthesis of (Z)-chloroalkene-type peptidomimetic (19).It has been demonstrated that d-Ala-l-Ala-type (E)-methylalkene isostere sequence shows a higher preference for a type-II′ β-turn than the corresponding (E)-alkene isostere.12a To determine whether amide-to-alkene isosteric switching in Gly-Gly peptide bonds affects the ability of a peptide to form a β-turn structure, CD spectra were obtained for peptidomimetics (17 and 19) in 50 mM Tris–HCl (pH 7.5) with 100 mM KCl (Fig. 2). The native peptide (20) was included as the control. The CD spectra analysis of turn structures has been discussed in the literature, albeit with lower accuracies.22 Although (E)-methylalkene-type peptidomimetic (17) appears to be random coil, the spectra of 19 exhibited a minimal absorbance peak at 202 nm, which is a typical characteristic of a β-turn conformation.20 On the other hand, the peptide 20 appears to form a β-turn conformation slightly. These results indicated that isosteric switching of Gly-Gly peptide bond with a (Z)-chloroalkene unit can induce a β-turn conformation in the secondary structure of peptides and also that the β-turn inducing ability of (Z)-chloroalkene isosteres is superior to that of (E)-methylalkene isosteres. To the best of our knowledge, this is the first example of such drastic structural control effects of (Z)-chloroalkene isosteres on peptides. We speculated that the electronic effects of the chlorine substituent are responsible for the superior β-turn inducing ability. Efforts to determine their biological activity, including DNA/RNA-binding affinity, are currently in progress.Open in a separate windowFig. 2CD spectra of peptidomimetics (17 and 19) and the corresponding native peptide (20). 相似文献
Entry | Conditions | Yieldb (%) | |||
---|---|---|---|---|---|
10-Z | 10-E | 11 | 12 | ||
1 | Me2CuLi | 48 | 19 | 15c | 1c |
2 | n-Bu2CuLi | 55 | 0 | 25d | 20d |
3 | n-Bu2CuLi, HMPA | 0 | 0 | 46d | 13d |
4 | n-Bu2CuLi, NMP | 44 | 0 | 29d | 6d |
5 | n-Bu2CuLi, DMSO | 46 | 7 | 19d | 2d |
6 | sec-Bu2CuLi | 67 | 6 | 27e | 0 |
7 | tert-Bu2CuLi | 74 | 4 | 2f | 0 |
8 | tert-Bu2CuMgCl | 63 | 0 | 0 | 0 |
112.
113.
Yamaguchi Kohei Hara Koji Nakagawa Kazuharu Namiki Chizuru Ariya Chantaramanee Yoshimi Kanako Nakane Ayako Kubota Kazumasa Furuya Junichi Tohara Haruka 《Clinical oral investigations》2020,24(11):3881-3888
Clinical Oral Investigations - This study aimed to investigate the relationship between aging and tooth loss on masseter muscle quantity and quality. This cross-sectional study was conducted among... 相似文献
114.
Kuwada Kohei Kawase Satoshi Nakata Karin Shinya Nodoka Narukawa Yuji Fuchino Hiroyuki Kawahara Nobuo Kiuchi Fumiyuki 《Journal of natural medicines》2020,74(1):135-141
Journal of Natural Medicines - LC–MS analyses of saponin fractions of Achyranthes roots in the Japanese market revealed that there were three patterns for the saponin fraction of their water... 相似文献
115.
116.
117.
118.
119.
120.
Magnifying endoscope with NBI to predict the depth of invasion in laryngo‐pharyngeal cancer 下载免费PDF全文
Ichiro Tateya MD PhD Shuko Morita MD Manabu Muto MD PhD Shin'ichi Miyamoto MD PhD Tomomasa Hayashi MD PhD Makiko Funakoshi MD Ikuo Aoyama MD Shigeru Hirano MD PhD Morimasa Kitamura MD PhD Seiji Ishikawa MD PhD Yo Kishimoto MD PhD Mami Morita MD Patnarin Mahattanasakul MD Satoshi Morita PhD Juichi Ito MD PhD 《The Laryngoscope》2015,125(5):1124-1129