首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1301028篇
  免费   97276篇
  国内免费   3928篇
耳鼻咽喉   18353篇
儿科学   42560篇
妇产科学   38047篇
基础医学   189841篇
口腔科学   35988篇
临床医学   111793篇
内科学   254875篇
皮肤病学   26789篇
神经病学   100430篇
特种医学   50886篇
外国民族医学   388篇
外科学   200107篇
综合类   31264篇
现状与发展   6篇
一般理论   303篇
预防医学   94726篇
眼科学   29696篇
药学   100640篇
  47篇
中国医学   4659篇
肿瘤学   70834篇
  2018年   12903篇
  2016年   11044篇
  2015年   13054篇
  2014年   17621篇
  2013年   25890篇
  2012年   35489篇
  2011年   38105篇
  2010年   22642篇
  2009年   21250篇
  2008年   36342篇
  2007年   39189篇
  2006年   39682篇
  2005年   38911篇
  2004年   37069篇
  2003年   36034篇
  2002年   35464篇
  2001年   58477篇
  2000年   59980篇
  1999年   51106篇
  1998年   14484篇
  1997年   13073篇
  1996年   13232篇
  1995年   12520篇
  1994年   11901篇
  1993年   10948篇
  1992年   41085篇
  1991年   40438篇
  1990年   39972篇
  1989年   38770篇
  1988年   36190篇
  1987年   35395篇
  1986年   33760篇
  1985年   32164篇
  1984年   23934篇
  1983年   20832篇
  1982年   12380篇
  1981年   10939篇
  1979年   22652篇
  1978年   15878篇
  1977年   13738篇
  1976年   12974篇
  1975年   14210篇
  1974年   16691篇
  1973年   16088篇
  1972年   15321篇
  1971年   14236篇
  1970年   13219篇
  1969年   12741篇
  1968年   11985篇
  1967年   10483篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
42.
43.
44.
45.
46.
47.
48.
A 17‐year‐old boy presented with recurring severe dermatitis of the face of 5‐months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris.  相似文献   
49.
Abstract

Objective: To understand the origin of extremely high gonadotropin levels in a perimenopausal woman.

Methods: A 52-year-old woman with a 2?months of amenorrhea followed spontaneous menstrual cycles recovery was referred to our outpatient clinic with elevated follicle-stimulating hormone (FSH, 483 mUI/ml), luteinizing hormone (LH, 475 mUI/ml) and prolactin (PRL, 173?ng/ml). She was known to take levosulpiride. The gonadotropin levels did not fit with the clinical features.

Results: A gonadotroph tumor was ruled out. Further analysis confirmed constantly high FSH, LH and PRL levels. The measurements were repeated using different analytical platforms with different results. After serial dilutions, nonlinearity was present suggesting an immunoassay interference. After post-polyethylene glycol recovery, hormone levels appeared in the normal range. Anti-goat antibodies were recognized in the serum of the patient.

Conclusions: This case report shows a case of falsely abnormal high gonadotropin and PRL levels in a woman during menopause transition. In the clinical practice the evaluation of gonadotropin profile is not recommended at this age, but the abnormal levels stimulated further evaluation. An interference in the assay due to anti-goat antibodies resulted in abnormally high level of FSH and LH. A strict collaboration between clinicians and the laboratory is needed, when laboratory findings do not correspond to clinical findings.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号