首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131973篇
  免费   8120篇
  国内免费   1053篇
耳鼻咽喉   1300篇
儿科学   4114篇
妇产科学   2941篇
基础医学   18993篇
口腔科学   4842篇
临床医学   12074篇
内科学   29161篇
皮肤病学   3365篇
神经病学   12544篇
特种医学   3164篇
外国民族医学   2篇
外科学   12345篇
综合类   1475篇
一般理论   56篇
预防医学   12668篇
眼科学   2281篇
药学   9485篇
  6篇
中国医学   769篇
肿瘤学   9561篇
  2024年   111篇
  2023年   1178篇
  2022年   1990篇
  2021年   4734篇
  2020年   2938篇
  2019年   3914篇
  2018年   4443篇
  2017年   3356篇
  2016年   3894篇
  2015年   4372篇
  2014年   5672篇
  2013年   7290篇
  2012年   11092篇
  2011年   11536篇
  2010年   6321篇
  2009年   5324篇
  2008年   8974篇
  2007年   8955篇
  2006年   8249篇
  2005年   7674篇
  2004年   6970篇
  2003年   6306篇
  2002年   5692篇
  2001年   1025篇
  2000年   694篇
  1999年   812篇
  1998年   948篇
  1997年   790篇
  1996年   650篇
  1995年   539篇
  1994年   500篇
  1993年   427篇
  1992年   381篇
  1991年   278篇
  1990年   266篇
  1989年   247篇
  1988年   234篇
  1987年   192篇
  1986年   203篇
  1985年   171篇
  1984年   180篇
  1983年   159篇
  1982年   179篇
  1981年   127篇
  1980年   137篇
  1979年   101篇
  1978年   100篇
  1977年   87篇
  1976年   75篇
  1974年   85篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Platelet α-granules release growth factors (GFs) that promote healing and tissue regeneration. Platelet-rich plasma (PRP) is shown to be beneficial in treating alopecia, and however, clinical response can be inconsistent. Due to several fold enrichment of platelets secreting large quantities of GFs following PRP injections, heterogeneity in amounts of GFs secreted by platelets may contribute to inconsistent clinical responses. Herein, we evaluated factors that could potentially contribute to heterogeneous secretion of GFs by platelets. We measured platelet secretion of transforming growth factor beta1 (TGFβ1), platelet-derived growth factor (PDGF-BB), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF2) in aliquots of de-identified PRP samples from female patients undergoing therapy in the hair disease clinic. Although secretion of GFs by platelets was comparable in PRP samples of patients with non-cicatricial and cicatricial alopecia, a Shapiro-Wilk test for normal distribution indicated significant variability across all patient samples. The amount of GF secreted by platelets was comparable when PRP prepared from two FDA-cleared devices with distinct techniques were compared. We provide evidence of platelets secreting heterogeneous amounts of GFs within each sample as high and low secretion of random factors could be simultaneously detected. These results suggest inherent heterogeneity in secretion of GFs by platelets in patient samples that are not influenced by the device used to prepare PRP. Since some GFs could have antagonistic effects on hair growth, a balance between amounts of growth promoting and inhibiting factors may be crucial in determining clinical response to PRP therapy.  相似文献   
62.
63.
Synthetic amorphous silica (SAS) in its nanosized form is now used in food applications although the potential risks for human health have not been evaluated. In this study, genotoxicity and oxidative DNA damage of two pyrogenic (NM‐202 and 203) and two precipitated (NM‐200 and ‐201) nanosized SAS were investigated in vivo in rats following oral exposure. Male Sprague Dawley rats were exposed to 5, 10, or 20 mg/kg b.w./day for three days by gavage. DNA strand breaks and oxidative DNA damage were investigated in seven tissues (blood, bone marrow from femur, liver, spleen, kidney, duodenum, and colon) with the alkaline and the (Fpg)‐modified comet assays, respectively. Concomitantly, chromosomal damage was investigated in bone marrow and in colon with the micronucleus assay. Additionally, malondialdehyde (MDA), a lipid peroxidation marker, was measured in plasma. When required, a histopathological examination was also conducted. The results showed neither obvious DNA strand breaks nor oxidative damage with the comet assay, irrespective of the dose and the organ investigated. Similarly, no increases in chromosome damage in bone marrow or lipid peroxidation in plasma were detected. However, although the response was not dose‐dependent, a weak increase in the percentage of micronucleated cells was observed in the colon of rats treated with the two pyrogenic SAS at the lowest dose (5 mg/kg b.w./day). Additional data are required to confirm this result, considering in particular, the role of agglomeration/aggregation of SAS NMs in their uptake by intestinal cells. Environ. Mol. Mutagen. 56:218–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
64.
65.
66.
67.
68.
Mammalian spermatogenesis is a well-organized process of cell development and differentiation. Meiosis expressed gene 1 (MEIG1) plays an essential role in the regulation of spermiogenesis. To explore potential mechanisms of MEIG1''s action, a yeast two-hybrid screen was conducted, and several potential binding partners were identified; one of them was membrane occupation and recognition nexus repeat containing 3 (MORN3). MORN3 mRNA is only abundant in mouse testis. In the testis, Morn3 mRNA is highly expressed in the spermiogenesis stage. Specific anti-MORN3 polyclonal antibody was generated against N-terminus of the full-length MORN3 protein, and MORN3 expression and localization was examined in vitro and in vivo. In transfected Chinese hamster ovary cells, the antibody specifically crossed-reacted the full-length MORN3 protein, and immunofluorescence staining revealed that MORN3 was localized throughout the cytoplasm. Among multiple mouse tissues, about 25 kDa protein, was identified only in the testis. The protein was highly expressed after day 20 of birth. Immunofluorescence staining on mixed testicular cells isolated from adult wild-type mice demonstrated that MORN3 was expressed in the acrosome in germ cells throughout spermiogenesis. The protein was also present in the manchette of elongating spermatids. The total MORN3 expression and acrosome localization were not changed in the Meig 1-deficient mice. However, its expression in manchette was dramatically reduced in the mutant mice. Our studies suggest that MORN3 is another regulator for spermatogenesis, probably together with MEIG1.  相似文献   
69.
The regrowth of amputated digit tips represents a unique regenerative healing in mammals with subcutaneous volume regrowth, restoration of dactylogram, and suppression of scar formation. Although factor analysis in amphibians and even in mice is easy to obtain, safety of harvesting biomaterial from human digit tip amputations for analysis has not yet been described.The aim of this study was to evaluate if recovering wound exudate does hamper clinical outcome or influence microbiologic or inflammation status.A predefined cohort of 18 patients with fresh digit tip amputations was randomly assigned to receive standard therapy (debridement, occlusive dressing) with (n = 9) or without (n = 9) collection of the whole wound exudate in every dressing change. Primary endpoint (lengthening) and secondary endpoints (regeneration of dactylogram, nail bed and bone healing, time to complete wound closure, scar formation, 2-point discrimination, microbiologic analysis, inflammatory factors interleukin (IL)-1α, tumor necrosis factor-α, IL-4, and IL-6) were determined by an independent, blinded observer.Patients’ characteristics showed no significant differences between the groups. All patients completed the study to the end of 3 months follow-up. Exudate collection did not influence primary and secondary endpoints. Furthermore, positive microbiologic findings as well as pus- and necrosis-like appearance neither impaired tissue restoration nor influenced inflammatory factor release.Here, the authors developed an easy and safe protocol for harvesting wound exudate from human digit tip amputations. For the first time, it was shown that harvesting does not impair regenerative healing. Using this method, further studies can be conducted to analyze regeneration associated factors in the human digit tip.DRKS.de Identifier: DRKS00006882 (UTN: U1111-1166-5723).  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号