BackgroundUpdated information on the vectorial capacity of vectors is required in each malarious areas as well in Iran and its neighboring countries such as Afghanistan. The aims of this study were to investigate the potential infection of about 800 specimens collected from malarious areas of Afghanistan and Iran, and to differentiate biological forms of Anopheles stephensi.MethodTwo molecular markers, 18S RNA gene subunit and AsteObp1 intron I, were used respectively for investigation Plasmodium infection and identifying the biological forms of An. stephensi.ResultsPlasmodium infection was detected in 4 pools of Afghanistan specimens, including An. stephensi, collected from Nangarhar. Individually examination showed infection in 5 An. stephensi (infection rate: 1.25), to P. falciparum (2), P. vivax (2) and a mix infection. Out of five infected specimens, three were intermediate forms and two were mysorensis. No infection was found in specimens collected from Iran (Chabahar County), probably due to the active malaria control program in south-east of Iran.ConclusionThe key role of An. stephensi, as a known Asian malaria vector, was re-emphasized in Afghanistan by the results achieved here. The fauna of vectors and the pattern of biological forms of An. stephensi are similar in both countries that urge regional investigations to provide evidence-based and applied data for decision-maker in malaria control. 相似文献
Recombinant antibodies are increasingly being employed as therapeutic agents especially in combination with anti-cancer drugs. The single-chain antibody fragments are small antigen-binding proteins which provide the most commonly used antibody formats for diagnostic and therapeutic purposes. These antibody fragments have more rapid tumor penetration and clearance from the serum relative to full-length monoclonal antibodies. There are in vitro antibody-display technologies such as phage display, cell surface display, ribosome display and mRNA display that can be used to isolate high specificity and affinity single-chain antibodies against a wide variety of targets. We review these strategies for generation of stable and active antibody fragments in the present article. 相似文献
To assess imaging data in COVID-19 patients and its association with clinical course and survival and 86 consecutive patients (52 males, 34 females, mean age?=?58.8 year) with documented COVID-19 infection were included. Seventy-eight patients (91%) were in severe stage of the disease. All patients underwent transthoracic echocardiography. Mean LVEF was 48.1% and mean estimated systolic pulmonary artery pressure (sPAP) was 27.9 mmHg. LV diastolic dysfunction was mildly abnormal in 49 patients (57.6%) and moderately abnormal in 7 cases (8.2%). Pericardial effusion was present in 5/86 (minimal in size in 3 cases and mild- moderate in 2). In 32/86 cases (37.2%), the severity of infection progressed from “severe” to “critical”. Eleven patients (12.8%) died. sPAP and computed tomography score were associated with disease progression (P value?=?0.002, 0.002 respectively). Tricuspid annular plane systolic excursion (TAPSE) was significantly higher in patients with no disease progression compared with those who deteriorated (P value?=?0.005). Pericardial effusion (minimal, mild or moderate) was detected more often in progressive disease (P?=?0.03). sPAP was significantly lower among survivors (P value?=?0.007). Echocardiographic findings (including systolic PAP, TAPSE and pericardial effusion), total CT score may have prognostic and therapeutic implication in COVID-19 patients.
Muscle-specific miRNAs, which are known as MyomiRs, are crucial regulatory elements for cardiovascular development. MyomiRs are abundantly expressed in the myocardium and regulate certain aspects of physiological and pathological processes in myocardiocytes, including cardiovascular development, myocardial remodeling, and arise for cardiovascular diseases through different mechanisms, such as epigenetic pathways. Clinical and experimental studies have confirmed the myomiRs as promising diagnostic biomarkers for the early diagnosis of cardiac disorders. In this review, we have summarized recent findings in the field of epigenetic modulations of myomiRs and cardiac regeneration associated with cardiac diseases. 相似文献
Lipid-rafts are defined as membrane microdomains enriched in cholesterol and glycosphingolipids within platelet plasma membrane. Lipid raft-mediated clot retraction requires factor XIII and other interacting proteins. The aim of this study was to investigate the proteins that interact with factor XIII in raft and non-raft domains of activated and non-activated platelet plasma membrane. By lipidomics analysis, we identified cholesterol- and sphingomyelin-enriched areas as lipid rafts. Platelets were activated by thrombin. Proteomics analysis provided an overview of the pathways in which proteins of rafts and non-rafts participated in the interaction network of FXIII-A1, a catalytic subunit of FXIII. “Platelet activation” was the principal pathway among KEGG pathways for proteins of rafts, both before and after activation. Network analysis showed four types of interactions (activation, binding, reaction, and catalysis) in raft and non-raft domains in interactive network of FXIII-A1. FXIII-A1 interactions with other proteins in raft domains and their role in homeostasis highlight the specialization of the raft domain in clot retraction via the Factor XIII protein network. 相似文献
MLN4924 is an experimental cancer drug known as inhibitor of NEDD8-activating enzyme (NAE). This anti-tumor candidate is a selective small-molecule inhibitor of NAE which is conjugated to cullin protein on Cullin-RING ligases (CRLs). This covalent modification actives cullin complex to recruit an ubiquitin-charged E2 and leads to downstream target protein polyubiquitination and proteasomal degradation. MLN4924, which can form a covalent adduct with NEDD8, and block NAE at the first step in this pathway, has shown anti-tumor activity in many kinds of cancer cell lines and also xenograft models, including lung cancer, colon cancer, melanoma and lymphoma. The anti-tumor activity of MLN4924 results from inactivation of CLRs, which causes DNA re-replication and inhibition of nuclear factor (NF)-κB signaling, thus leading to cancer cell death. A mutation can reduce the enzyme’s sensitivity to MLN4924. Verma et al. in 2013 studied on molecular dynamics simulation of a mutant A171T and consequently found out that this mutation reduce MLN4924 interaction with DNA Binding site of enzyme as a result of reduction of enzyme affinity to ATP. One year later, in 2014, Wei Xu et al. carried out a research on inhibitor resistant cell lines and revealed that a couple of mutations so called Y352H and I310N leads to enzyme resistance to MLN4924 inhibitor, interestingly, the cause reported was the increase of enzyme affinity to ATP. As in Wei Xu et al. experiment the molecular dynamics simulation was not considered, present study is conducted to identify enzyme mutation mechanism by molecular dynamics approach using advantages of Gromacs software version 4.5.6. 相似文献