首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1705篇
  免费   144篇
  国内免费   13篇
耳鼻咽喉   2篇
儿科学   81篇
妇产科学   72篇
基础医学   175篇
口腔科学   60篇
临床医学   148篇
内科学   437篇
皮肤病学   26篇
神经病学   106篇
特种医学   180篇
外科学   216篇
综合类   53篇
预防医学   114篇
眼科学   31篇
药学   75篇
中国医学   1篇
肿瘤学   85篇
  2023年   11篇
  2022年   12篇
  2021年   25篇
  2020年   22篇
  2019年   30篇
  2018年   28篇
  2017年   16篇
  2016年   22篇
  2015年   51篇
  2014年   49篇
  2013年   49篇
  2012年   62篇
  2011年   112篇
  2010年   72篇
  2009年   70篇
  2008年   66篇
  2007年   67篇
  2006年   74篇
  2005年   74篇
  2004年   87篇
  2003年   56篇
  2002年   44篇
  2001年   45篇
  2000年   39篇
  1999年   38篇
  1998年   35篇
  1997年   46篇
  1996年   27篇
  1995年   27篇
  1994年   28篇
  1993年   16篇
  1992年   31篇
  1991年   28篇
  1990年   31篇
  1989年   32篇
  1988年   28篇
  1987年   39篇
  1986年   29篇
  1985年   28篇
  1984年   19篇
  1983年   20篇
  1982年   18篇
  1981年   10篇
  1980年   16篇
  1979年   20篇
  1977年   12篇
  1976年   12篇
  1975年   13篇
  1973年   10篇
  1966年   10篇
排序方式: 共有1862条查询结果,搜索用时 69 毫秒
1.
Early during rat thymus ontogeny, an important proportion of thymocytes expresses IL-2R and contains IL-2 mRNA. To investigate the role of the IL-2-IL-2R complex in rat T cell maturation, we supplied either recombinant rat IL-2 or blocking anti-CD25 mAb to rat fetal thymus organ cultures (FTOC) under several experimental conditions. The IL-2 treatment initially stimulated the growth of thymocytes and, as a result, induced T cell differentiation, but the continuous addition of IL-2 to rat FTOC, as well as the anti-CD25 administration, resulted in cell number decrease and inhibition of thymocyte maturation. These results indicate that immature rat thymocytes bear functional high- affinity IL-2R and that IL-2 promotes T cell differentiation as a consequence of its capacity to stimulate cell proliferation. Modifications in TCR alpha beta repertoire and increased numbers of NKR- P1+ cells, largely NK cells, were also observed in IL-2-treated FTOC. Furthermore, IL-2-responsiveness of different thymocyte subsets changed throughout thymic ontogeny. Immature CD4-CD8-cells responded to IL-2 in two stages, early in thymus development and around birth, in correlation with the maturation of two distinct waves of thymic cell progenitors. Mature CD8+ thymocytes maximally responded to IL-2 around birth, supporting a role for IL-2 in the increased proliferation of mature thymocytes observed in vivo in the perinatal period. Taken together, these findings support a role for IL-2 in rat T cell development.   相似文献   
2.
Performance-Based Incentive Compensation (PBIC) plans currently prevail throughout industry and have repeatedly demonstrated effectiveness as powerful motivational tools for attracting and retaining top talent, enhancing key indicators, increasing employee productivity, and, ultimately, enhancing mission-based parameters. The University of Arkansas for Medical Sciences (UAMS) College of Medicine introduced its PBIC plan to further the transition of the college to a high-performing academic and clinical enterprise. A forward-thinking compensation plan was progressively implemented during a three-year period.After the introduction of an aggressive five-year vision plan in 2002, the college introduced a PBIC plan designed to ensure the retention and recruitment of high-quality faculty through the use of uncapped salaries that reflect each faculty member's clinical, research, and education duties. The PBIC plan was introduced with broad, schoolwide principles adaptable to each department and purposely flexible to allow for tailor-made algorithms to fit the specific approaches required by individual departments.As of July 2006, the college had begun to reap a variety of short-term benefits from Phase I of its PBIC program, including increases in revenue and faculty salaries, and increased faculty morale and satisfaction.Successful implementation of a PBIC plan depends on a host of factors, including the development of a process for evaluating performance that is considered fair and reliable to the entire faculty. The college has become more efficient and effective by adopting such a program, which has helped it to increase overall productivity. The PBIC program continues to challenge our faculty members to attain their highest potential while rewarding them accordingly.  相似文献   
3.
Many of the clinical benchmarking projects featured in the Lead Story are designed to produce quick results. The Northern New England Cardiovascular Disease Study Group (NNE), by contrast, is a long-term effort to improve patients' functional health status. Formed in 1987, NNE is a voluntary consortium comprising all providers of open heart surgery in Maine, New Hampshire, and Vermont--five facilities and 28 surgeons. Although NNE is just beginning to focus on best practices within the region, its early benchmarking efforts have produced a collaborative environment in which clinical information is now readily shared. Because of this, its accomplishments have been striking: the creation of a database that includes information on more than 18,000 patients; the development of a highly accurate mortality prediction tool for patients facing coronary bypass surgery; and a 24 percent decrease in regional operative mortality following coronary artery bypass graft (CABG) surgery.  相似文献   
4.
5.
6.
7.
Increased fruit and vegetable (FV) intake is associated with decreased risk of nutrition-related chronic diseases. Sociodemographic disparities in FV intake indicate the need for strategies that promote equitable access to FVs. The United States Department of Agriculture’s Gus Schumacher Nutrition Incentive Program (GusNIP) supports state and local programs that offer nutrition incentives (NIs) that subsidize purchase of FVs for people participating in the Supplemental Nutrition Assistance Program (SNAP). While a growing body of research indicates NIs are effective, the pathways through which GusNIP achieves its results have not been adequately described. We used an equity-focused, participatory process to develop a retrospective Theory of Change (TOC) to address this gap. We reviewed key program documents; conducted a targeted NI literature review; and engaged GusNIP partners, practitioners, and participants through interviews, workshops, and focus groups in TOC development. The resulting TOC describes how GusNIP achieves its long-term outcomes of increased participant FV purchases and intake and food security and community economic benefits. GusNIP provides NIs and promotes their use, helps local food retailers develop the capacity to sell FVs and accept NIs in accessible and welcoming venues, and supports local farmers to supply FVs to food retailers. The TOC is a framework for understanding how GusNIP works and a tool for improving and expanding the program.  相似文献   
8.
We reconstitute a phosphotyrosine-mediated protein condensation phase transition of the ∼200 residue cytoplasmic tail of the epidermal growth factor receptor (EGFR) and the adaptor protein, Grb2, on a membrane surface. The phase transition depends on phosphorylation of the EGFR tail, which recruits Grb2, and crosslinking through a Grb2-Grb2 binding interface. The Grb2 Y160 residue plays a structurally critical role in the Grb2-Grb2 interaction, and phosphorylation or mutation of Y160 prevents EGFR:Grb2 condensation. By extending the reconstitution experiment to include the guanine nucleotide exchange factor, SOS, and its substrate Ras, we further find that the condensation state of the EGFR tail controls the ability of SOS, recruited via Grb2, to activate Ras. These results identify an EGFR:Grb2 protein condensation phase transition as a regulator of signal propagation from EGFR to the MAPK pathway.

Recently, a class of phenomena known as protein condensation phase transitions has begun to emerge in biology. Originally identified in the context of nuclear organization (1) and gene expression (2), a distinct two-dimensional protein condensation on the cell membrane has now been discovered in the T cell receptor (TCR) signaling system involving the scaffold protein LAT (35). TCR activation results in phosphorylation of LAT on at least four distinct tyrosine sites, which subsequently recruit the adaptor protein Grb2 and the signaling molecule PLCγ via selective binding interactions with their SH2 domains. Additional scaffold and signaling molecules, including SOS, GADS, and SLP76, are recruited to Grb2 and PLCγ through further specific protein–protein interactions (6, 7). Multivalency among some of these binding interactions can crosslink LAT molecules in a two-dimensional bond percolation network on the membrane surface. The resulting LAT protein condensate resembles the nephrin:NCK:N-WASP condensate (8) in that both form on the membrane surface under control of tyrosine phosphorylation and exert at least one aspect of functional control over signaling output via a distinct type of kinetic regulatory mechanism (911). The basic molecular features controlling the LAT and nephrin protein condensates are common among biological signaling machinery, and other similar condensates continue to be discovered (12, 13). The LAT condensation shares downstream signaling molecules with the EGF-receptor (EGFR) signaling system, raising the question if EGFR may participate in a signaling-mediated protein condensation itself.EGFR signals to the mitogen-activated protein kinase (MAPK) pathway and controls key cellular functions, including growth and proliferation (1416). EGFR is a paradigmatic model system in studies of signal transduction, and immense, collective scientific effort has revealed the inner workings of its signaling mechanism down to the atomic level (17). EGFR is autoinhibited in its monomeric form. Ligand-driven activation is achieved through formation of an asymmetric receptor dimer in which one kinase activates the other to phosphorylate the nine tyrosine sites in the C-terminal tails (17, 18). There is an obvious conceptual connection between EGFR and the LAT signaling system in T cells. The ∼200-residue–long cytoplasmic tail of EGFR resembles LAT in that both are intrinsically disordered and contain multiple sites of tyrosine phosphorylation that recruit adaptor proteins, including Grb2, upon receptor activation (19). Phosphorylation at tyrosine residues Y1068, Y1086, Y1148, and Y1173 in the EGFR tail creates sites to which Grb2 can bind via its SH2 domain. EGFR-associated Grb2 subsequently recruits SOS, through binding of its SH3 domains to the proline-rich domain of SOS. Once at the membrane, SOS undergoes a multistep autoinhibition-release process and begins to catalyze nucleotide exchange of RasGDP to RasGTP, activating Ras and the MAPK pathway (20).While these most basic elements of the EGFR activation mechanism are widely accepted, larger-scale features of the signaling complex remain enigmatic. A number of studies have reported higher-ordered multimers of EGFR during activation, including early observations by Förster Resonance Energy Transfer and fluorescence lifetime studies (2123), as have more recent studies using single molecule (24, 25) and computational methods (26). Structural analyses and point mutation studies on EGFR have identified a binding interface enabling EGFR asymmetric dimers to associate (27), but the role of these higher-order assemblies remains unclear. At the same time, many functional properties of the signaling system remain unexplained as well. For example, EGFR is a frequently altered oncogene in human cancers, and drugs (including tyrosine kinase inhibitors) targeting EGFR signaling have produced impressive initial patient responses (28). All too often, however, these drugs fail to offer sustained patient benefits, in large part because of poorly understood resistance mechanisms (29). Physical aspects of the cellular microenvironment have been implicated as possible contributors to resistance development (30), and there is a growing realization that EGFR possesses kinase-independent (e.g., signaling independent) prosurvival functions in cancer cells (31). These points fuel speculation that additional layers of regulation over the EGFR signaling mechanism exist, including at the level of the receptor signaling complex itself.Here we report that EGFR undergoes a protein condensation-phase transition upon activation. We reconstituted the cytoplasmic tails of EGFR on supported bilayers and characterized the system behavior upon interaction with Grb2 and SOS, using total internal reflection fluorescence (TIRF) imaging. This experimental platform has been highly effective for revealing both phase-transition characteristics and functional signaling aspects of LAT protein condensates (4, 5, 10, 3234). Published reports on the LAT system to date have emphasized SOS (or the SOS proline-rich [PR] domain) as a critical crosslinking element. Titrating the SOS PR domain into an initially homogeneous mixture of phosphorylated LAT and Grb2 revealed a sharp transition to the condensed phase, which we have also observed with the EGFR:Grb2:SOS system. Under slightly different conditions, however, we report observations of an EGFR:Grb2 condensation-phase transition without any SOS or other crosslinking molecule. We show that crosslinking is achieved through a Grb2–Grb2 binding interface. Phosphorylation on Grb2 at Y160 as well as a Y160E mutation [both reported to disrupt Grb2–Grb2 binding (35, 36)] were observed to prevent formation of EGFR condensates. We note that the evidence of Grb2–Grb2 binding we observed occurred in the context of EGFR-associated Grb2, which is localized to the membrane surface; free Grb2 dimers are not necessary.The consequence of EGFR condensation on downstream signaling is characterized by mapping the catalytic efficiency of SOS to activate Ras as a function of the EGFR condensation state. SOS is the primary Ras guanine nucleotide exchange factor (GEF) responsible for activating Ras in the EGFR-to-MAPK signaling pathway (3740). At the membrane, SOS undergoes a multistep process of autoinhibition release before beginning to activate Ras. Once fully activated, SOS is highly processive, and a single SOS molecule can activate hundreds of Ras molecules before disengaging from the membrane (4143). Autoinhibition release in SOS is a slow process, which necessitates that SOS be retained at the membrane for an extended time in order for Ras activation to begin (5, 10). This delay between initial recruitment of SOS and subsequent initiation of its Ras GEF activity provides a kinetic proofreading mechanism that essentially requires SOS to achieve multivalent engagement with the membrane (e.g., through multiple Grb2 or other interactions) in order for it to activate any Ras molecules.Experimental results described here reveal that Ras activation by SOS is strongly enhanced by EGFR condensation. Calibrated measurements of both SOS recruitment and Ras activation confirmed enhanced SOS catalytic activity on a per-molecule basis, in addition to enhanced recruitment to the condensates. These results suggest that a Grb2-mediated EGFR protein condensation-phase transition is a functional element controlling signal propagation from EGFR downstream to the MAPK signaling pathway.  相似文献   
9.
PURPOSE: To determine performance characteristics of transvaginal ultrasonography (US) and hysterosonography for diagnosing endometrial abnormality in asymptomatic postmenopausal women with breast cancer receiving tamoxifen. MATERIALS AND METHODS: The authors prospectively examined 138 women receiving tamoxifen by using transvaginal US, hysterosonography, and office hysteroscopy. The combined hysteroscopic-histopathologic diagnosis was the reference standard. Sensitivity, specificity, positive and negative predictive values, and likelihood ratios of transvaginal US and hysterosonography were calculated. RESULTS: All 138 women underwent transvaginal US; 104, successful hysterosonography; and 117, successful hysteroscopy. Uterine abnormality was present in 47 (40.2%) of 117 women: 45 with polyps and two with submucosal fibroids. Receiver operating characteristic curve analysis revealed 6 mm to be the optimal endometrial thickness cutoff for diagnosing endometrial abnormalities. When a thickness greater than 6 mm or a focal endometrial finding was considered abnormal, transvaginal US had a sensitivity of 85.1% and a specificity of 55.7%. In 92 women who completed transvaginal US, hysterosonography, and hysteroscopy, hysterosonography was more specific (79.2%; P =.008) but not significantly more sensitive (89.7%; P =.508) than transvaginal US. When women with abnormal transvaginal US findings were further examined with hysterosonography, the sequential combination of transvaginal US and hysterosonography was more specific (77.1%) than transvaginal US alone (P <.001), without a significant decrease in sensitivity (78.7%; P =.25). CONCLUSION: In asymptomatic postmenopausal women receiving tamoxifen, 6 mm is the optimal endometrial thickness cutoff for diagnosing endometrial abnormalities with transvaginal US. Further examination with hysterosonography can improve specificity by reducing the high false-positive rate of transvaginal US.  相似文献   
10.
HYPOTHESIS: Comorbid conditions are associated with the risk of death from coronary artery bypass graft surgery. DESIGN: Prospective cohort study data were collected on patient and disease characteristics and comorbid conditions including hypertension, diabetes, obesity, vascular disease, chronic obstructive pulmonary disease, cancer (excluding nonmelanoma skin cancer), dialysis-dependent renal failure, liver disease, and dementia. Statistical analysis used logistic regression for the calculation of adjusted odds ratios (ORs) and 95% confidence intervals (CIs). SETTING: Regional cardiac surgery database. PATIENTS: A total of 27,239 consecutive patients undergoing isolated coronary artery bypass graft surgery. MAIN OUTCOME MEASURE: In-hospital mortality rate. RESULTS: The prevalence of comorbid conditions was as follows: hypertension, 64.3%; diabetes, 30.1%; obesity, 24.6%; severe obesity, 7.2%; vascular disease, 18.3%; chronic obstructive pulmonary disease, 10.9%; peptic ulcer, 7.5%; cancer, 3.8%; renal failure, 1.5%; liver disease, 0.6%; and dementia, 0.1%. After adjustment for patient and disease characteristics, including age, sex, previous cardiac surgery, priority of surgery, degree of left main coronary stenosis, number of diseased coronary arteries, and left ventricular ejection fraction, the following comorbid conditions were significant predictors of in-hospital mortality: diabetes (OR, 1.19; 95% CI, 1.01-1.40; P =.03), vascular disease (OR, 1.67; 95% CI, 1.41-1.97; P<.001), chronic obstructive pulmonary disease (OR, 1.57; 95% CI, 1.29-1.91; P<.001), peptic ulcer (OR, 1.34; 95% CI, 1.05-1.71; P =.02), and dialysis-dependent renal failure (OR, 3.68; 95% CI, 2.65-5.13; P<.001). There was no significant association between in-hospital mortality and hypertension, obesity or severe obesity, cancer, liver disease, or dementia. CONCLUSION: Even after adjustment for other patient and disease characteristics, comorbid conditions (especially diabetes, vascular disease, chronic obstructive pulmonary disease, peptic ulcer disease, and dialysis-dependent renal failure) are associated with significantly increased risk of death after coronary artery bypass graft surgery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号