首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
基础医学   1篇
临床医学   1篇
内科学   2篇
神经病学   1篇
药学   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 7 毫秒
1
1.
2.
Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of calpain activity using Western blot analysis showed a significant increase in basal activity of calpains in aged neurons. The observed increase of calpain activity was correlated with elevated protein levels of μ-calpain. Ca2+-imaging experiments performed on living individual neurons using the dye calcium green demonstrated a twofold increase in intracellular calcium concentration in aged neurons as compared to young neurons. The observed changes of intracellular calcium in aged neurons might play a role in their increased vulnerability to neurodegeneration.  相似文献   
3.
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder with distinct neuropathological features. Extracellular plaques, consisting of aggregated amyloid peptides of 39-43 amino acids are one of the most prominent pathological hallmarks of this disease. Although the exact neurochemical effector mechanism of Abeta aggregation is not yet elucidated, age-associated disturbances of metal ion metabolism have been proposed to promote the formation of aggregates from soluble Abeta. Oxidative stress is postulated to be a downstream effect of Abeta-metal ion interactions. Therefore, the modulation of brain metal metabolism and attenuation of oxidative stress by antioxidant molecules are proposed as a potential therapeutic intervention in AD. Here, we summarize the recent literature focused on APP/Abeta-metal ion interactions and the use of antioxidant metal chelators as potential therapy against AD.  相似文献   
4.
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号