排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
目的:在采集、处理和传输过程中,医学图像会存在各种噪声,严重影响医学图像的质量和后续对图像的各种处理,因此医学图像去噪具有重要意义。同时医学图像数据量大,去噪处理算法复杂,在一般个人电脑上进行医学图像去噪仍是一个非常耗时的过程.很难满足实际应用中高实时性的要求.因此需要通过优化来提高去噪的处理速度。方法:本文利用CUDA(Compute Unified Device Architecture)并行编程对基于同质算法的三维医学图像去噪进行加速,CPU和GPU(Graphic ProcessorUnit)异构编程方式能发挥GPU高强度的计算能力,提高算法的执行速度。通过使用纹理存储器将图像数据与纹理绑定,优化存储器访问,提高数据访问速度。优化过程中,合理选择三维图像数据的分块方式和线程块维度。可以获得更快的加速。结果:与基于同质的matlab和CPU去噪程序相比,并行优化后GPU程序在保持去噪图像质量的前提卞可以达到几百倍的加速。结论:CUDA加速大大缩短了三维医学图像去噪的运行时间,解决了医学图像去噪的速度瓶颈问题.可以应用于对运行速度有要求的图像处理中。 相似文献
1