首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
We found that N-[4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydroxybenzamide (CPPHA), is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). CPPHA alone had no agonist activity and acted as a selective positive allosteric modulator of human and rat mGluR5. CPPHA potentiated threshold responses to glutamate in fluorometric Ca(2+) assays 7- to 8-fold with EC(50) values in the 400 to 800 nM range, and at 10 microM shifted mGluR5 agonist concentration-response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine (DHPG) 4- to 7-fold to the left. The only effect of CPPHA on other mGluRs was weak inhibition of mGluR4 and 8. Neither CPPHA nor the previously described 3,3'-difluorobenzaldazine (DFB) affected [(3)H]quisqualate binding to mGluR5, but although DFB partially competed for [(3)H]3-methoxy-5-(2-pyridinylethynyl)pyridine binding, CPPHA had no effect on the binding of this 2-methyl-6-(phenylethynyl)-pyridine analog to mGluR5. Although the binding sites for the two classes of allosteric modulators seem to be different, these different allosteric sites can modulate functionally and mechanistically similar allosteric effects. In electrophysiological studies of brain slice preparations, it had been previously shown that activation of mGluR5 receptors by agonists increased N-methyl-D-aspartate (NMDA) receptor currents in the CA1 region of hippocampal slices. We found that CPPHA (10 microM) potentiated NMDA receptor currents in hippocampal slices induced by threshold levels of DHPG, whereas having no effect on these currents by itself. Similarly, 10 microM CPPHA also potentiated mGluR5-mediated DHPG-induced depolarization of rat subthalamic nucleus neurons. These results demonstrate that allosteric potentiation of mGluR5 increases the effect of threshold agonist concentrations in native systems.  相似文献   

2.
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca(2+) assays (EC(50) = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 microM) and competed for binding of [(3)H]2-methyl-6-(phenylethynyl)pyridine (K(i) = 4.3 microM), but not [(3)H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.  相似文献   

3.
A highly potent and selective metabotropic glutamate receptor (mGluR) 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2, 3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC), is described. FTIDC inhibits, with equal potency, l-glutamate-induced intracellular Ca(2+) mobilization in Chinese hamster ovary cells expressing human, rat, or mouse mGluR1a. The IC(50) value of FTIDC is 5.8 nM for human mGluR1a and 6200 nM for human mGluR5. The maximal response in agonist concentration-response curves was reduced in the presence of higher concentrations of FTIDC, suggesting the inhibition in a noncompetitive manner. FTIDC at 10 microM showed no agonistic, antagonistic, or positive allosteric modulatory activity toward mGluR2, mGluR4, mGluR6, mGluR7, or mGluR8. FTIDC did not displace [(3)H]l-quisqualate binding to human mGluR1a, indicating FTIDC is an allosteric antagonist. Studies using chimeric and mutant receptors of mGluR1 showed that transmembrane (TM) domains 4 to 7, especially Phe801 in TM6 and Thr815 in TM7, play pivotal roles in the antagonism of FTIDC. FTIDC inhibited the constitutive activity of mGluR1a, suggesting that FTIDC acts as an inverse agonist of mGluR1a. Intraperitoneally administered FTIDC inhibited face-washing behavior elicited by a group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine in mice at doses that did not produce motor impairment. Oral administration of FTIDC also inhibited the face-washing behavior. FTIDC is a highly potent and selective allosteric mGluR1 antagonist and a compound having oral activity without species differences in its antagonistic activity on recombinant human, mouse, and rat mGluR1. FTIDC could therefore be a valuable tool for elucidating the functions of mGluR1 not only in rodents but also in humans.  相似文献   

4.
Previous studies indicate that agonists of the group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, may provide a novel approach for the treatment of anxiety disorders and schizophrenia. However, the relative contributions of the mGluR2 and mGluR3 subtypes to the effects of the group II mGluR agonists remain unclear. In the present study, we describe an alternate synthesis and further pharmacological characterization of a recently reported positive allosteric modulator of mGluR2 termed biphenyl-indanone A (BINA). In recombinant systems, BINA produced a robust and selective potentiation of the response of mGluR2 to glutamate with no effect on the glutamate response of other mGluR subtypes. In hippocampal brain slices, BINA (1 microM) significantly potentiated the mGluR2/3 agonist-induced inhibition of excitatory synaptic transmission at the medial perforant path-dentate gyrus synapse. BINA was also efficacious in several models predictive of antipsychotic- and anxiolytic-like activity in mice. The behavioral effects of BINA were blocked by the mGluR2/3 antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), suggesting that the in vivo effects of BINA are mediated by increased activation of mGluR2. Collectively, these results indicate that BINA is a selective mGluR2 positive allosteric modulator and provide further support for the growing evidence that selective allosteric potentiators of mGluR2 mimic many of the in vivo actions of mGluR2/3 agonists that may predict therapeutic utility of these compounds.  相似文献   

5.
Inhibition of rat brain glutamate receptors by philanthotoxin   总被引:2,自引:0,他引:2  
The actions of philanthotoxin (PhTX) were studied on the function of glutamate receptors expressed in Xenopus oocytes injected with rat brain mRNA and on binding of radioligands to rat brain glutamate receptors. PhTX reversibly inhibited the oocyte responses to quisqualate, N-methyl-D-aspartate (NMDA) and kainate in a dose-dependent manner. The NMDA receptor was the most sensitive to PhTX action (10-fold more than the kainate receptor) and the least sensitive was the smooth current component of the quisqualate response. Recovery from PhTX block differed among the three amino acids. NMDA responses recovered completely within a few minutes whereas responses to kainate and quisqualate recovered more slowly. PhTX had no effect on equilibrium binding of [3H]glutamate to rat brain cortical membranes studied in buffer treated to eliminate microorganisms. Based on the drug specificity of this [3H]glutamate binding, it is suggested to be mostly to the NMDA receptor. Low concentrations of PhTX (1-10 microM) potentiated binding of [3H] MK-801, a specific noncompetitive inhibitor of the NMDA receptor. However, higher PhTX concentrations inhibited this binding with an IC50 of 20 microM, similar to its inhibition of the oocyte-expressed NMDA receptor. Inhibition of [3H]MK-801 binding by PhTX was noncompetitive. It is suggested that PhTX, like the more potent MK-801, binds to an allosteric site on the NMDA receptor and inhibits its function but its binding site is not identical with the MK-801 binding site.  相似文献   

6.
Novel isoxazolopyridone derivatives that are metabotropic glutamate receptor (mGluR) 7 antagonists were discovered and pharmacologically characterized. 5-Methyl-3,6-diphenylisoxazolo[4,5-c]pyridin-4(5H)-one (MDIP) was identified by random screening, and 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) was produced by chemical modification of MDIP. MDIP and MMPIP inhibited L-(+)-2-amino-4-phosphonobutyric acid (L-AP4)-induced intracellular Ca2+ mobilization in Chinese hamster ovary (CHO) cells coexpressing rat mGluR7 with Galpha(15) (IC50 = 20 and 26 nM). The maximal response in agonist concentration-response curves was reduced in the presence of MMPIP, and its antagonism is reversible. MMPIP did not displace [3H](2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) bound to mGluR7. These results suggested that these isoxazolopyridone derivatives are allosteric antagonists. In CHO cells expressing rat mGluR7, MDIP and MMPIP inhibited l-AP4-induced inhibition of forskolin-stimulated cAMP accumulation (IC50 = 99 and 220 nM). In CHO cells coexpressing human mGluR7 with Galpha(15), MDIP and MMPIP also inhibited the l-AP4-induced cAMP response. The maximal degree of inhibition by MMPIP was higher than that by MDIP in a cAMP assay. MMPIP was able to antagonize an allosteric agonist, the N,N'-dibenzhydryl-ethane-1,2-diamine dihydrochloride (AMN082)-induced inhibition of cAMP accumulation. In the absence of these agonists, MMPIP caused a further increase in forskolin-stimulated cAMP levels in CHO cells expressing mGluR7, whereas a competitive antagonist, LY341495, did not. This result indicates that MMPIP has an inverse agonistic activity. The intrinsic activity of MMPIP was pertussis toxin-sensitive and mGluR7-dependent. MMPIP at concentrations of at least 1 microM had no significant effect on mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, and mGluR8. MMPIP is the first allosteric mGluR7-selective antagonist that could potentially be useful as a pharmacological tool for elucidating the roles of mGluR7 on central nervous system functions.  相似文献   

7.
Group II metabotropic glutamate receptors (mGluRs), mGluR2 and mGluR3, play a number of important roles in mammalian brain and represent exciting new targets for certain central nervous system disorders. We now report synthesis and characterization of a novel family of derivatives of dihydrobenzo[1,4]diazepin-2-one that are selective negative allosteric modulators for group II mGluRs. These compounds inhibit both mGluR2 and mGluR3 but have no activity at group I and III mGluRs. The novel mGluR2/3 antagonists also potently block mGluR2/3-mediated inhibition of the field excitatory postsynaptic potentials at the perforant path synapse in hippocampal slices. These compounds induce a rightward shift and decrease the maximal response in the glutamate concentration-response relationship, consistent with a noncompetitive antagonist mechanism of action. Furthermore, radioligand binding studies revealed no effect on binding of the orthosteric antagonist [(3)H]LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)propionic acid]. Site-directed mutagenesis revealed that a single point mutation in transmembrane V (N735D), previously shown to be an important residue for potentiation activity of the mGluR2 allosteric potentiator LY487379 [N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine], is not critical for the inhibitory activity of negative allosteric modulators of group II mGluRs. However, this single mutation in human GluR2 almost completely blocked the enhancing activity of biphenyl-indanone A, a novel allosteric potentiator of mGluR2. Our data suggest that these two positive allosteric modulators of mGluR2 may share a common binding site and that this site may be distinct from the binding site for the new negative allosteric modulators of group II mGluRs.  相似文献   

8.
Metabotropic glutamate receptor type 1 (mGluR1) is thought to play important roles in the neurotransmission and pathogenesis of several neurological disorders. Here, we describe the radioligand binding properties and pharmacological effects of a newly synthesized, high-affinity, selective, and noncompetitive mGluR1 antagonist, 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198). YM-298198 inhibited glutamate-induced inositol phosphate production in mGluR1-NIH3T3 cells with an IC50 of 16 +/- 5.8 nM in a noncompetitive manner. Its radiolabeled form, [3H]YM-298198, bound to mGluR1-NIH3T3 cell membranes with a KD of 32 +/- 8.5 nM and a Bmax of 2297 +/- 291 fmol/mg protein. In ligand displacement experiments using rat cerebellum membrane, an existing noncompetitive mGluR1 antagonist 7-(hydroxyimino)cyclo-propa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) competitively displaced [3H]YM-298198 binding, although glutamate and other mGluR1 ligands acting on a glutamate site failed to inhibit [3H]YM-298198 binding, suggesting that YM-298198 binds to CPCCOEt (allosteric) binding sites but not to glutamate (agonist) binding sites. Specificity was demonstrated for mGluR1 over mGluR subtypes 2 to 7, ionotropic glutamate receptors, and other receptor, transporter, and ion channel targets. In in vivo experiments, orally administered YM-298198 showed a significant analgesic effect in streptozotocin-induced hyperalgesic mice at doses (30 mg/kg) that did not cause Rotarod performance impairment, indicating that it is also useful even for in vivo experiments. In conclusion, YM-298198 is a newly synthesized, high-affinity, selective, and noncompetitive antagonist of mGluR1 that will be a useful pharmacological tool due to its highly active properties in vitro and in vivo. Its radiolabeled form [3H]YM-298198 will also be a valuable tool for future investigation of the mGluR1.  相似文献   

9.
The most common cause of inherited mental retardation, fragile X syndrome, results from a triplet repeat expansion in the FMR1 gene and loss of the mRNA binding protein, fragile X mental retardation protein (FMRP). In the absence of FMRP, signaling through group I metabotropic glutamate receptors (mGluRs) is enhanced. We previously proposed a mechanism whereby the audiogenic seizures exhibited by FMR1 null mice result from an imbalance in excitatory mGluR and inhibitory GABA(B) receptor (GABA(B)R) signaling (Mol Pharmacol 76:18-24, 2009). Here, we tested the mGluR5-positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), the mGluR5 inverse agonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), and GABA(B) receptor agonists, alone and in combination on receptor protein expression and audiogenic seizures in FMR1 mice. Single doses of MPEP (30 mg/kg), the GABA(B)R orthosteric agonist R-baclofen (1 mg/kg), or the GABA(B)R-positive allosteric modulator N,N'-dicyclopentyl-2-(methylthio)-5-nitro-4,6-pyrimidine diamine (GS-39783) (30 mg/kg), reduced the incidence of seizures. However, when administered subchronically (daily injections for 6 days), MPEP retained its anticonvulsant activity, whereas R-baclofen and GS-39783 did not. When administered at lower doses that had no effect when given alone, a single injection of MPEP plus R-baclofen also reduced seizures, but the effect was lost after subchronic administration. We were surprised to find that subchronic treatment with R-baclofen also induced tolerance to a single high dose of MPEP. These data demonstrate that tolerance develops rapidly to the antiseizure properties of R-baclofen alone and R-baclofen coadministered with MPEP, but not with MPEP alone. Our findings suggest that cross-talk between the G-protein signaling pathways of these receptors affects drug efficacy after repeated treatment.  相似文献   

10.
Previous studies identified partial inhibitors and allosteric modulators of 5-hydroxytryptamine ([5-amino-3-(3,4-dichlorophenyl)-1,2-dihydropyrido[3,4-b]pyrazin-7-yl]carbamic acid ethyl ester [SoRI-6238], 4-(2-[bis(4-fluorophenyl)methoxy]ethyl)-1-(2-trifluoromethyl-benzyl)-piperidine [TB-1-099]) and dopamine transporters N-(diphenylmethyl)-2-phenyl-4-quinazolinamine, [SoRI-9804]). We report here the identification of three novel allosteric modulators of the dopamine transporter [N-(2,2-diphenylethyl)-2-phenyl-4-quinazolinamine [SoRI-20040], N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine [SoRI-20041], and [4-amino-6-[(diphenylmethyl)amino]-5-nitro-2-pyridinyl]carbamic acid ethyl ester [SoRI-2827]]. Membranes were prepared from human embryonic kidney cells expressing the cloned human dopamine transporter (hDAT). [(125)I]3beta-(4'-Iodophenyl)tropan-2beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding and other assays followed published procedures. SoRI-20040, SoRI-20041, and SoRI-2827 partially inhibited [(125)I]RTI-55 binding, with EC(50) values ranging from approximately 1.4 to 3 microM and E(max) values decreasing as the [(125)I]RTI-55 concentrations increased. All three compounds decreased the [(125)I]RTI-55 B(max) value and increased the apparent K(d) value in a manner well described by a sigmoid dose-response curve. In dissociation rate experiments, SoRI-20040 (10 microM) and SoRI-20041 (10 microM), but not SoRI-2827 (10 microM), slowed the dissociation of [(125)I]RTI-55 from hDAT by approximately 30%. Using rat brain synaptosomes, all three agents partially inhibited [(3)H]dopamine uptake, with EC(50) values ranging from 1.8 to 3.1 microM and decreased the V(max) value in a dose-dependent manner. SoRI-9804 and SoRI-20040 partially inhibited amphetamine-induced dopamine transporter-mediated release of [(3)H]1-methyl-4-phenylpyridinium ion from rat caudate synaptosomes in a dose-dependent manner. Viewed collectively, we report several compounds that allosterically modulate hDAT binding and function, and we identify novel partial inhibitors of amphetamine-induced dopamine release.  相似文献   

11.
Glutamate plays an important role in the regulation of dopamine neuron activity. In particular, the glutamatergic input from the subthalamic nucleus is thought to provide control over dopamine neuron firing patterns. The degeneration of dopamine neurons in the substantia nigra pars compacta (SNc) observed in Parkinson's disease (PD) is believed to be due to a complex interplay of factors, including oxidative stress and mitochondrial dysfunction. Although glutamate is not the primary cause of cell death in PD, there is evidence suggesting excessive glutamate release onto dopamine neurons may play a role in continued degeneration. Although many studies have focused on the role of glutamate in the SNc, little work has been directed at exploring the modulatory control of glutamate release in this region. Previous studies have found a high-potency inhibitory effect of nonselective group III mGluR agonist on glutamatergic transmission in the SNc. Using whole-cell patch-clamp methods and novel pharmacological tools, we have determined that mGluR4 mediates the group III mGluR modulation of excitatory transmission in the rat SNc. The group III mGluR-selective agonist l-(+)-2-amino-4-phosphonobutyric acid inhibits excitatory transmission in the SNc at low micromolar concentrations with a maximal inhibition occurring at 3 muM. This effect was potentiated by the mGluR4-selective allosteric modulator N-phenyl-7-(hydroxymino)cyclopropa[b]chromen-1a-carboxamide and was not mimicked by the mGluR8-selective agonist (S)-3,4-dicarboxyphenylglycine. Interestingly, in an attempt to employ knockout mice to confirm the role of mGluR4, we discovered an apparent species difference suggesting that in mice, both mGluR4 and mGluR8 modulate excitatory transmission in the SNc.  相似文献   

12.
Glutamate is a major neurotransmitter in the central nervous system, and abnormal glutamate neurotransmission has been implicated in many neurological disorders, including schizophrenia, Alzheimer's disease, Parkinson's disease, addiction, anxiety, depression, epilepsy, and pain. Metabotropic glutamate receptors (mGluRs) activate intracellular signaling cascades in a G protein-dependent manner, which offer the opportunity for developing drugs that regulate glutamate neurotransmission in a functionally selective manner. In the present study, we further characterize the human mGluR2 (hmGluR2) potentiator binding site by showing that the substitution of the three amino acids found to be required for hmGluR2 potentiation, specifically Ser(688), Gly(689), and Asn(735), with the homologous hmGluR3 amino acids, inactivates the positive allosteric modulator activity of several structurally unique mGluR2 potentiators. Based on the characterization of the hmGluR2 potentiator binding site, we developed a novel scintillation proximity assay that was able to discriminate between compounds that were hmGluR2-specific potentiators, and those that were active on both hmGluR2 and hmGluR3. In addition, we substituted Ser(688), Gly(689), and Asn(735) into hmGluR3 and created an active hmGluR2 allosteric modulation site on the hmGluR3 receptor.  相似文献   

13.
Interactions of dl-flerobuterol with central beta adrenoceptors were investigated. It inhibited the binding of [3H]CGP 12177, a selective beta adrenoceptor ligand, to membranes prepared from rat cerebral cortex, cerebellum, heart and lung. The affinity of dl-flerobuterol was very close in all tissues (Ki approximately 1 microM). In cerebral cortex, binding inhibition of [3H]CGP 12177 was stereospecific, l-flerobuterol (Ki = 483 nM) being 70-fold more potent than d-flerobuterol (Ki = 34 microM). Moreover, dl-flerobuterol (Ki = 926 nM) was 7-fold less potent than isoproterenol (Ki = 140 nM) to displace [3H]CGP 12177 binding, but 5-fold more potent than salbutamol (Ki = 4600 nM). Flerobuterol did not inhibit the radioligand binding to the other receptors at the highest concentration tested, thus leading to a very high beta adrenergic selectivity. Flerobuterol increased the concentration of cyclic AMP in slices of rat cerebral cortex in a dose-dependent manner; this effect was antagonized by atenolol and propranolol. Compared to isoproterenol or norepinephrine, which produced cyclic AMP maximal increases of 380 and 460%, respectively, it showed a weaker activity with a maximal stimulation obtained at 100 microM, corresponding to a cAMP increase of 140% over basal value (100%). These data revealed that flerobuterol possessed a beta adrenergic agonist activity. Moreover, it antagonized competitively the isoproterenol- or norepinephrine-stimulated accumulation of cAMP. At low concentrations of isoproterenol or norepinephrine, the stimulation of adenylate cyclase was only due to the action of flerobuterol, but at higher concentrations, the response of isoproterenol or norepinephrine was competitively blocked by flerobuterol. At 10 microM, isoproterenol surmounted fully this antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Previous clinical and animal studies suggest that selective activators of M(1) and/or M(4) muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimer's disease. However, highly selective centrally penetrant activators of either M(1) or M(4) have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M(4) mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M(4). VU0152099 and VU0152100 had no agonist activity but potentiated responses of M(4) to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M(4) reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M(4) plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M(4) may mimic some of the antipsychotic-like effects of less selective mAChR agonists.  相似文献   

15.
Quantitative autoradiography was used to characterize the pharmacological specificity and anatomical distributions of subtypes of L-[3H]glutamate binding sites in rat brain. One population of sites was sensitive to N-methyl-D-aspartate (NMDA) and other compounds thought to be specific for the NMDA receptor. This site was enriched in stratum radiatum of hippocampus (CA1) where it constituted about 80% of glutamate binding sites and it represented a variable portion of glutamate binding sites throughout the brain. A second population of sites had a high affinity for quisqualate. Approximately 80% of glutamate binding sites in cerebellar molecular layer were of the high affinity quisqualate type. The number of these sites was greatly increased in the presence of Cl- and Ca++ ions. A subset of the high affinity quisqualate sites was sensitive to competition by kainate, particularly in stratum lucidum of hippocampus; the density of these high affinity kainate-sensitive sites was decreased in the presence of Ca++ but not Cl- ions. At high concentrations quisqualate competes for all glutamate binding sites, as reported previously. There was a good correspondence between the density and distribution of low affinity quisqualate sites and NMDA-sensitive sites. Pharmacological analysis suggested that the low affinity quisqualate site and the NMDA site are equivalent. Anatomical and pharmacological evidence suggests that the NMDA-, (high affinity) quisqualate- and kainate-sensitive glutamate binding sites may correspond to the physiologically defined NMDA, quisqualate and kainate receptors.  相似文献   

16.
Recent studies suggest that agonists of group II metabotropic glutamate (mGlu) receptors (mGlu2/3) have potential utility as novel therapeutic agents for treatment of psychiatric disorders such as anxiety and schizophrenia. Agonists of mGlu2/3 receptors block amphetamine- and phencyclidine (PCP)-induced hyperlocomotor activity in rodents, two actions that may predict potential antipsychotic activity of these compounds. We now report that LY487379 [N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine], a recently described selective allosteric potentiator of mGlu2 receptor, has behavioral effects similar to mGlu2/3 receptor agonists. LY487379 and LY379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate], an ortho-steric mGlu2/3 receptor agonist, induced similar dose-dependent reductions in PCP- and amphetamine-induced hyperlocomotor activity in C57BL6/J mice at doses that did not significantly alter spontaneous locomotor activity. These effects were blocked by the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid]. LY487379 had a short duration of action compared with LY379268. Furthermore, unlike the mGlu2/3 agonist, LY487379 reversed amphetamine-induced disruption of prepulse inhibition of the acoustic startle reflex. When LY379268 was given chronically, it failed to block amphetamine- and PCP-induced hyperlocomotor activity. The finding that the effects of an orthosteric mGlu2/3 receptor agonist in these models can be mimicked by a selective allosteric potentiator of mGlu2 suggests that these effects are mediated by the mGlu2 receptor subtype. Furthermore, these data raise the possibility that a selective allosteric potentiator of mGlu2 receptor could have utility as a novel approach for the treatment of schizophrenia.  相似文献   

17.
Glutamate stimulated the efflux of dopamine from slices of rat striatum superfused with a Krebs' bicarbonate buffer containing a physiological concentration of Mg++ (1.2 mM). This effect was observed in the presence of high concentrations of glutamate (3-10 mM), but not at lower concentrations (0.01-1 mM). The response was not accompanied by increased lactate dehydrogenase activity, a measure of glutamate neurotoxicity. At 10 mM, glutamate increased dopamine efflux by more than 9-fold. This was reduced to about 34% of the control response by either the competitive N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovaleric acid (100 microM) or the noncompetitive N-methyl-D-aspartate receptor antagonist MK 801 [(+)-5-methyl-10,11-dihydro-5H-dibenso[a,d]cyclohepten-5,10- imine hydrogen maleate] (1-10 microM), but was unaffected by a kainate/quisqualate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10-100 microM). Glutamate-stimulated dopamine efflux also was unaffected by tetrodotoxin (0.5 microM), withdrawal of extracellular Ca++ [and addition of 1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid] or systemic administration of reserpine (5 mg/kg, 24 hr before the experiment), an inhibitor of the vesicular storage of dopamine. In contrast, nomifensine (10 microM), an inhibitor of high-affinity dopamine transport, reduced glutamate-induced dopamine efflux to 15% of the control response. Moreover, the response to glutamate was blocked by deleting NaCl from the medium. Collectively, these results suggest that, at high concentrations and in the presence of Mg++, glutamate can stimulate the release of dopamine by a mechanism that does not use Ca(++)-dependent exocytosis but instead involves a reversal of the dopamine transport system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Drugs that interact with group II metabotropic glutamate receptors (mGluRs) are presently being evaluated for a role in the treatment of anxiety disorders and symptoms of schizophrenia. Their mechanism of action is believed to involve a reduction in excitatory neurotransmission in limbic and forebrain regions commonly associated with these mental disorders. In rodents, the glutamatergic neurons in the midline paraventricular thalamic nucleus (PVT) provide excitatory inputs to the limbic system and forebrain. PVT also displays a high density of group II mGluRs, predominantly the metabotropic glutamate 2 receptor (mGluR2). Because the role of group II mGluRs in regulating cellular and synaptic excitability in this location has yet to be determined, we used whole-cell patch-clamp recording and acute rat brain slice preparations to evaluate PVT neuron responses to a selective group II mGluR agonist, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY 379268). LY 379268 consistently induced membrane hyperpolarization and suppressed firing by postsynaptic receptor-mediated activation of a barium-sensitive background K(+) conductance. This effect could be blocked by (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY 341495), a selective group II mGluR antagonist. In addition, LY 379268 acted at presynaptic receptors to reduce ionotropic glutamate receptor-mediated excitatory synaptic transmission. An mGluR2-positive allosteric modulator, 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulfonamide hydrochloride (LY 487379), resulted in leftward shifts of the LY 379268 dose-response curve for both postsynaptic and presynaptic actions. The data demonstrate that activation of postsynaptic and presynaptic group II (presumably mGluR2) mGluRs reduces neuronal excitability in midline thalamus, an action that may contribute to the effectiveness of mGluR2-activating drugs in rodent models of anxiety and psychosis.  相似文献   

19.
3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), a rigid analog of 2-amino-7-phosphonoheptanoic acid, has been reported as a selective N-methyl-D-aspartate (NMDA) antagonist. [3H]CPP bound with relatively high affinity (Kd = 201 nM) to Triton-treated rat brain crude synaptic membranes using a centrifugation assay. Binding was saturable, reversible, heat sensitive and dependent on protein concentration. Specific binding, which represented 75 to 85% of the total counts bound, was enriched in synaptosomal and microsomal fractions of rat brain, suggesting an involvement in events related to synaptic transmission. On a regional basis, binding was highest in hippocampus, followed by cortex greater than striatum greater than cerebellum = thalamus. No specific binding could be detected in pons medulla or in liver, kidney, heart, lung and adrenal tissue. [3H]CPP binding was stereoselective for the isomers of glutamate, 2-amino-5-phosphonopentanoic acid, homocysteic acid, alpha-aminoadipic acid and N-methyl-aspartate. The most potent compounds tested were L-glutamate and CPP, which were equiactive in displacing [3H]CPP. The order of activity of other excitatory amino acid receptor ligands was D-2-amino-5-phosphonopentanoic acid greater than L-homocysteic acid greater than or equal to DL-2-amino-7-phosphonoheptanoic acid = D-aspartate = L-aspartate greater than L-serine-O-sulfate = D-alpha-aminoadipic acid = ibotenate greater than NMDA greater than DL-2-amino-6-phosphonohexanoic acid greater than quisqualate greater than N-methyl-L-aspartate. The quisqualate- and kainate-type receptor agonists DL-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and kainic acid, respectively, had negligible activity at 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Binding of the dihydropyridine calcium channel antagonist [3H]nitrendipine to an intact rat brain mitochondrial-synaptosomal fraction (P2) was specific, saturable, temperature-dependent and of high affinity (Kd = 115-467 pM). The effects of the calcium channel antagonists verapamil and diltiazem on [3H]nitrendipine binding and their temperature dependence were investigated. At 0 and 25 degrees C, verapamil inhibited [3H]nitrendipine binding incompletely in a manner consistent with an allosteric modulation and nearly independent of the incubation temperature. The effects of diltiazem, however, were found to be highly temperature-dependent. At 25 and 37 degrees C, 10 microM diltiazem enhanced [3H]nitrendipine binding to values of 140 and 200% of control, respectively. At 0 degrees C, 10 microM diltiazem inhibited [3H]nitrendipine binding to a value of 68% of control. Analysis of saturation isotherms at steady state demonstrated that at all temperatures studied the effects of verapamil and diltiazem on [3H]nitrendipine binding were due to alterations in the ligand dissociation constant (Kd). At 25 degrees C, these alterations were mediated by changes in the rate of ligand-receptor complex dissociation. Competition studies of verapamil and diltiazem at 25 and 0 degrees C indicate that the effects of these two drugs on [3H]nitrendipine binding are mutually exclusive. We conclude that the binding of [3H]nitrendipine is allosterically modulated by spacially related binding sites for verapamil and diltiazem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号