首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sec1Munc18-like (SM) proteins functionally interact with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in membrane fusion, but the mechanisms of these interactions differ. In vertebrates, SM proteins that mediate exocytosis (Munc18-1, 18-2, and 18c) bind to the closed conformation of syntaxins 1-4, which requires the N-terminal H(abc) domains and SNARE motifs of these syntaxins. In contrast, SM proteins that mediate Golgi and endoplasmic reticulum fusion (Sly1 and Vps45) bind only to short N-terminal sequences of syntaxins 5, 16, or 18, independently of their H(abc) domains and SNARE motifs. We now show that Munc18-1, Sly1, and Vps45 interact with cognate syntaxins via similar, autonomously folded N-terminal domains, but the syntaxin 5-binding surface of the Sly1 N-terminal domain is opposite to the syntaxin 1-binding surface of the Munc18-1 N-terminal domain. In transfected cells, the N-terminal domain of Sly1 specifically disrupts the structure of the Golgi complex, supporting the notion that the interaction of Sly1 with syntaxin 5 is essential for fusion. These data, together with previous results, suggest that a relatively small N-terminal domain of SM proteins is dedicated to mechanistically distinct interactions with SNAREs, leaving the remaining large parts of SM proteins free to execute their as yet unknown function as effector domains.  相似文献   

2.
Sec1/Munc18 proteins (SM proteins) bind to soluble NSF attachment protein receptors (SNAREs) and play an essential role in membrane fusion. Divergent modes of regulation have been proposed for different SM proteins indicating that they can either promote or inhibit SNARE assembly. This is in part because of discrete modes of binding that have been described for various SM/SNARE complexes. One mode suggests that SM proteins bind only to Syntaxins (Stx) preventing SNARE assembly, whereas in another they facilitate SNARE assembly and bind to SNARE complexes. The mammalian cell surface SM protein Munc18c binds to an N-peptide in Stx4, and this is compatible with its interaction with SNARE complexes. Here we describe the crystal structure of Munc18c in complex with the Stx4 N-peptide. This structure shows remarkable similarity with a yeast complex indicating that the mode of binding, which can accommodate SNARE complexes, is highly conserved throughout evolution. Modeling reveals the presence of the N-peptide binding mode in most but not all yeast and mammalian SM/Stx pairs, suggesting that it has coevolved to fulfill a specific regulatory function. It is unlikely that the N-peptide interaction alone accounts for the specificity in SM/SNARE binding, implicating other contact surfaces in this function. Together with other data, our results support a sequential two-state model for SM/SNARE binding involving an initial interaction via the Stx N-peptide, which somehow facilitates a second, more comprehensive interaction comprising other contact surfaces in both proteins.  相似文献   

3.
Munc18-1 binds directly to the neuronal SNARE complex   总被引:1,自引:0,他引:1  
Both SM proteins (for Sec1/Munc18-like proteins) and SNARE proteins (for soluble NSF-attachment protein receptors) are essential for intracellular membrane fusion, but the general mechanism of coupling between their functions is unclear, in part because diverse SM protein/SNARE binding modes have been described. During synaptic vesicle exocytosis, the SM protein Munc18-1 is known to bind tightly to the SNARE protein syntaxin-1, but only when syntaxin-1 is in a closed conformation that is incompatible with SNARE complex formation. We now show that Munc18-1 also binds tightly to assembled SNARE complexes containing syntaxin-1. The newly discovered Munc18-1/SNARE complex interaction involves contacts of Munc18-1 with the N-terminal H(abc) domain of syntaxin-1 and the four-helical bundle of the assembled SNARE complex. Together with earlier studies, our results suggest that binding of Munc18-1 to closed syntaxin-1 is a specialization that evolved to meet the strict regulatory requirements of neuronal exocytosis, whereas binding of Munc18-1 to assembled SNARE complexes reflects a general function of SM proteins involved in executing membrane fusion.  相似文献   

4.
The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p.GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56-549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.  相似文献   

5.
Yeast Sec18p and its mammalian orthologue N-ethylmaleimide-sensitive fusion protein (NSF) are hexameric ATPases with a central role in vesicle trafficking. Aided by soluble adapter factors (SNAPs), Sec18p/NSF induces ATP-dependent disassembly of a complex of integral membrane proteins from the vesicle and target membranes (SNAP receptors). During the ATP hydrolysis cycle, the Sec18p/NSF homohexamer undergoes a large-scale conformational change involving repositioning of the most N terminal of the three domains of each protomer, a domain that is required for SNAP-mediated interaction with SNAP receptors. Whether an internal conformational change in the N-terminal domains accompanies their reorientation with respect to the rest of the hexamer remains to be addressed. We have determined the structure of the N-terminal domain from Sec18p by x-ray crystallography. The Sec18p N-terminal domain consists of two beta-sheet-rich subdomains connected by a short linker. A conserved basic cleft opposite the linker may constitute a SNAP-binding site. Despite structural variability in the linker region and in an adjacent loop, all three independent molecules in the crystal asymmetric unit have the identical subdomain interface, supporting the notion that this interface is a preferred packing arrangement. However, the linker flexibility allows for the possibility that other subdomain orientations may be sampled.  相似文献   

6.
COPII-coated vesicles carry proteins from the endoplasmic reticulum to the Golgi complex. This vesicular transport can be reconstituted by using three cytosolic components containing five proteins: the small GTPase Sar1p, the Sec23p/24p complex, and the Sec13p/Sec31p complex. We have used a combination of biochemistry and electron microscopy to investigate the molecular organization and structure of Sec23p/24p and Sec13p/31p complexes. The three-dimensional reconstruction of Sec23p/24p reveals that it has a bone-shaped structure, (17 nm in length), composed of two similar globular domains, one corresponding to Sec23p and the other to Sec24p. Sec13p/31p is a heterotetramer composed of two copies of Sec13p and two copies of Sec31p. It has an elongated shape, is 28-30 nm in length, and contains five consecutive globular domains linked by relatively flexible joints. Putting together the architecture of these Sec complexes with the interactions between their subunits and the appearance of the coat in COPII-coated vesicles, we present a model for COPII coat organization.  相似文献   

7.
Cotranslational protein transport into dog pancreas microsomes involves the Sec61p complex plus a luminal heat shock protein 70. Posttranslational protein transport into the yeast endoplasmic reticulum (ER) involves the so-called Sec complex in the membrane, comprising a similar Sec61p subcomplex, the putative signal peptide receptor subcomplex, and the heat shock protein 40-type subunit, Sec63p, plus a luminal heat shock protein 70. Recently, human homologs of yeast proteins Sec62p and Sec63p were discovered. Here we determined the concentrations of these two membrane proteins in dog pancreas microsomes and observed that the canine homologs of yeast proteins Sec62p and Sec63p are abundant proteins, present in almost equimolar concentrations as compared with Sec61alphap monomers. Furthermore, we detected fractions of these two proteins in association with each other as well as with the Sec61p complex. The J domain of the human Sec63p was shown to interact with immunoglobulin heavy chain binding protein. Thus, the membrane of the mammalian ER contains components, known from the posttranslationally operating protein translocase in yeast. We suggest that these components are required for efficient cotranslational protein transport into the mammalian ER as well as for other transport processes.  相似文献   

8.
Vesicular transport during exocytosis is regulated by Rab GTPase (Sec4p in yeast), which is activated by a guanine nucleotide exchange factor (GEF) called Sec2p. Here, we report the crystal structure of the Sec2p GEF domain in a complex with the nucleotide-free Sec4p at 2.7 A resolution. Upon complex formation, the Sec2p helices approach each other, flipping the side chain of Phe-109 toward Leu-104 and Leu-108 of Sec2p. These three residues provide a hydrophobic platform to attract the side chains of Phe-49, Ile-53, and Ile-55 in the switch I region as well as Phe-57 and Trp-74 in the interswitch region of Sec4p. Consequently, the switch I and II regions are largely deformed, to create a flat hydrophobic interface that snugly fits the surface of the Sec2p coiled coil. These drastic conformational changes disrupt the interactions between switch I and the bound guanine nucleotide, which facilitates the GDP release. Unlike the recently reported 3.3 A structure of the Sec4p.Sec2p complex, our structure contains a phosphate ion bound to the P-loop, which may represent an intermediate state of the nucleotide exchange reaction.  相似文献   

9.
SNARE proteins play a critical role in intracellular membrane fusion by forming tight complexes that bring two membranes together and involve sequences called SNARE motifs. These motifs have a high tendency to form amphipathic coiled-coils that assemble into four-helix bundles, and often precede transmembrane regions. NMR studies in dodecylphosphocholine (DPC) micelles suggested that the N-terminal half of the SNARE motif from the neuronal SNARE synaptobrevin binds to membranes, which appeared to contradict previous biophysical studies of synaptobrevin in liposomes. NMR analyses of synaptobrevin reconstituted into nanodiscs and into liposomes now show that most of its SNARE motif, except for the basic C terminus, is highly flexible, exhibiting cross-peak patterns and transverse relaxation rates that are very similar to those observed in solution. Considering the proximity to the bilayer imposed by membrane anchoring, our data show that most of the synaptobrevin SNARE motif has a remarkable reluctance to bind membranes. This conclusion is further supported by NMR experiments showing that the soluble synaptobrevin SNARE motif does not bind to liposomes, even though it does bind to DPC micelles. These results show that nanodiscs provide a much better membrane model than DPC micelles in this system, and that most of the SNARE motif of membrane-anchored synaptobrevin is accessible for SNARE complex formation. We propose that the charge and hydrophobicity of SNARE motifs is optimized to enable formation of highly stable SNARE complexes while at the same time avoiding membrane binding, which could hinder SNARE complex assembly.  相似文献   

10.
Bleeding problems are associated with defects in platelet alpha-granules, yet little is known about how these granules are formed and released. Mutations affecting VPS33B, a novel Sec1/Munc18 protein, have recently been linked to arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome. We have characterized platelets from patients with ARC syndrome and observed reduced aggregation with arachidonate and adenosine diphosphate (ADP). Structural abnormalities seen in ARC platelets included increased platelet size, a pale appearance in blood films, elevated numbers of delta-granules, and completely absent alpha-granules. Soluble and membrane-bound alpha-granule proteins were significantly decreased or undetectable in ARC platelets, suggesting that both the releasable protein pools and membrane components of alpha-granules were absent. The role of VPS33B in platelet granule biogenesis was evaluated by immunofluorescence microscopy in normal human megakaryocytes. VPS33B colocalized appreciably with markers of alpha-granules, moderately with late endosomes/lysosomes, minimally with delta-granules/lysosomes, and not with cis-Golgi complexes. VPS33B protein expression determined by immunoblotting confirmed the presence of VPS33B in control fibroblasts but not in ARC fibroblasts, and in normal megakaryocytes but not in platelets. We conclude that like other Sec1/Munc18 proteins, VPS33B is involved in intracellular vesicle trafficking, being essential for the development of platelet alpha-granules but not for granule secretion.  相似文献   

11.
12.
Yeast vacuoles undergo priming, docking, and homotypic fusion, although little has been known of the connections between these reactions. Vacuole-associated Vam2p and Vam6p (Vam2/6p) are components of a 65S complex containing SNARE proteins. Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking. We now report that the 38S complex consists of both Vam2/6p and the class C Vps proteins [Reider, S. E. and Emr, S. D. (1997) Mol. Biol. Cell 8, 2307-2327]. This complex includes Vps33p, a member of the Sec1 family of proteins that bind t-SNAREs. We term this 38S complex HOPS, for homotypic fusion and vacuole protein sorting. This unexpected finding explains how Vam2/6p associates with SNAREs and provides a mechanistic link of the class C Vps proteins to Ypt/Rab action. HOPS initially associates with vacuole SNAREs in "cis" and, after release by priming, hops to Ypt7p, activating this Ypt/Rab switch to initiate docking.  相似文献   

13.
Peroxisomes are single membrane-bound organelles present in virtually all eukaryotes. These organelles participate in several important metabolic processes, and defects in peroxisome function and biogenesis are a significant contributor to human disease. Several models propose that peroxisomes arise from the endoplasmic reticulum (ER) in a process that involves the translocation of "group I" peroxisomal membrane proteins into the ER, the exit of these group I peroxisomal membrane proteins from the ER by vesicle budding, and the formation of nascent peroxisomes from vesicles containing the group I peroxisomal membrane proteins. A central prediction of these models is that the formation of nascent peroxisomes requires protein translocation into the ER. Sec61p is an essential component of the ER translocon, and we show here that loss of Sec61p activity has no effect on peroxisome biogenesis. In addition, loss of the SEC61-related gene, SSH1, also has no effect on peroxisome biogenesis. Although some proteins may enter the ER independently of Sec61p or Ssh1p, none are known, leading us to propose that peroxisome biogenesis may not require protein import into the ER, and by extension, transfer of proteins from the ER to the peroxisome.  相似文献   

14.
SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on its physical connection to the Vam7p SNARE domain. By attaching a transmembrane anchor to the C terminus of Vam7p to create Vam7tm, we bypass the requirement for the N-domain to anchor Vam7tm to reconstituted proteoliposomes. The N-domain of Vam7tm is indispensible for trans-SNARE complex assembly in SNARE-only reactions. Introducing Vam7(1-125)p as a separate recombinant protein suppresses the defect caused by N-domain deletion from Vam7tm, demonstrating that the function of this N-domain is not constrained to covalent attachment to Vam7p. The Vam7p N-domain catalyzes the docking of apposed membranes by promoting transinteractions between R- and Q-SNAREs. This function of the Vam7p N-domain depends on the presence of PI3P and its affinity for PI3P. Added N-domain can even promote SNARE complex assembly when Vam7 still bears its own N-domain.  相似文献   

15.
The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. We previously have cloned two yeast genes encoding syntaxins, SSO1 and SSO2, as suppressors of the temperature-sensitive sec1–1 mutation. We now describe a third suppressor of sec1–1, which we call MSO1. Unlike SSO1 and SSO2, MSO1 is specific for sec1 and does not suppress mutations in any other SEC genes. MSO1 encodes a small hydrophilic protein that is enriched in a microsomal membrane fraction. Cells that lack MSO1 are viable, but they accumulate secretory vesicles in the bud, indicating that the terminal step in secretion is partially impaired. Moreover, loss of MSO1 shows synthetic lethality with mutations in SEC1, SEC2, and SEC4, and other synthetic phenotypes with mutations in several other late-acting SEC genes. We further found that Mso1p interacts with Sec1p both in vitro and in the two-hybrid system. These findings suggest that Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p.  相似文献   

16.
17.
alpha-1-Antitrypsin is a serum protein that inhibits many proteolytic enzymes. Recently, it was suggested that the alpha-1-antitrypsin-trypsin complex is an acyl ester analogous to the acyl intermediate that forms between trypsin and its substrates. In previous work we showed that the alpha-1-antitrypsin-trypsin complex can be split at high pH, releasing a component of alpha-1-antitrypsin. This component had a new carboxyl-terminal lysine, and it had lost a peptide of about 4000 daltons. In order to determine whether the alpha-1-antitrypsin is bound to trypsin through the new carboxy-terminal lysine, as would be expected if the above hypothesis is correct, we split the complex in the presence of 18OH-. When the new carboxy-terminal lysine was cleaved with carboxypeptidase B, singly labeled, doubly labeled, and unlabeled lysine were recovered. These data support the hypothesis that the alpha-1-antitrypsin-trypsin complex is an acyl ester or a tetrahedral precursor that is transformed into the acyl ester form at high pH. If other enzymes are bound by a similar mechanism, the methods used may be useful in determining which amino acids on alpha-1-antitrypsin bind covalently to each enzyme.  相似文献   

18.
Munc18-1 and Syntaxin1 are essential proteins for SNARE-mediated neurotransmission. Munc18-1 participates in synaptic vesicle fusion via dual roles: as a docking/chaperone protein by binding closed Syntaxin1, and as a fusion protein that binds SNARE complexes in a Syntaxin1 N-peptide dependent manner. The two roles are associated with a closed-open Syntaxin1 conformational transition. Here, we show that Syntaxin N-peptide binding to Munc18-1 is not highly selective, suggesting that other parts of the SNARE complex are involved in binding to Munc18-1. We also find that Syntaxin1, with an N peptide and a physically anchored C terminus, binds to Munc18-1 and that this complex can participate in SNARE complex formation. We report a Munc18-1-N-peptide crystal structure that, together with other data, reveals how Munc18-1 might transit from a conformation that binds closed Syntaxin1 to one that may be compatible with binding open Syntaxin1 and SNARE complexes. Our results suggest the possibility that structural transitions occur in both Munc18-1 and Syntaxin1 during their binary interaction. We hypothesize that Munc18-1 domain 3a undergoes a conformational change that may allow coiled-coil interactions with SNARE complexes.  相似文献   

19.
Interleukin (IL)-18 is the interferon-gamma-inducing factor and has other proinflammatory properties. The precise role of IL-18 in immunoinflammatory diseases remains poorly understood. In this study, we show that in vivo electrotransfer of an expression-plasmid DNA encoding for murine IL-18 binding protein (BP) (the endogenous inhibitor of IL-18) prevents fatty streak development in the thoracic aorta of apoE knockout mice and slows progression of advanced atherosclerotic plaques in the aortic sinus. More importantly, transfection with the IL-18BP plasmid induces profound changes in plaque composition (decrease in macrophage, T cell, cell death, and lipid content and increase in smooth muscle cell and collagen content) leading to a stable plaque phenotype. These results identify for the first time a critical role for IL-18/IL-18BP regulation in atherosclerosis and suggest a potential role for IL-18 inhibitors in reduction of plaque development/progression and promotion of plaque stability. The full text of this article is available at http://www.circresaha.org.  相似文献   

20.
Identification of factors that may stimulate ischemia-induced neovascularization without increasing atherosclerotic plaque progression is of major therapeutic importance. We hypothesized that interleukin-18 binding protein (IL-18BP), a major antiinflammatory protein with plaque-stabilizing activities, may affect the neovascularization in mice ischemic hindlimb. Ischemia was produced by artery femoral occlusion in mice that were subjected to in vivo intramuscular electrotransfer of either an empty plasmid or a murine IL-18BP plasmid. Angiographic score, capillary density (CD31 staining), and laser Doppler perfusion data at day 28 showed significant improvement in ischemic/nonischemic leg ratio by respectively 1.6-, 1.4-, and 1.5-fold in IL-18BP-treated mice compared with controls (P<0.01). This was associated with a significant 2-fold increase in both vascular endothelial growth factor (VEGF) and phospho-Akt protein content in the ischemic hindlimb of IL-18BP-treated mice (P<0.05). Similar results were obtained in IL-18-deficient mice. Because bone marrow-derived endothelial progenitor cells (BM-EPCs) are involved in postnatal vasculogenesis, EPCs were isolated and cultivated from bone marrow mononuclear cells. IL-18BP treatment led to a significant 1.8-fold increase in the percentage of BM-EPCs characterized as cells positive for both AcLDL-Dil and von Willebrand factor (P<0.001). In conclusion, IL-18BP stimulates ischemia-induced neovascularization in association with an activation of VEGF/Akt signaling and an increase in BM-EPCs mobilization and differentiation. Our findings strongly suggest a major antiangiogenic role of endogenous IL-18 in postischemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号