首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum. 2. The free [Ca2+] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca2+ release channels in its membrane. This process involves Ca2+-sensing mechanisms on both the luminal and cytoplasmic sides of the RyR. In the cardiac RyR, these have been shown to be a luminal Ca2+ activation site (L-site; 60 micromol/L affinity), a cytoplasmic activation site (A-site; 0.9 micromol/L affinity) and a cytoplasmic Ca2+ inactivation site (I2-site; 1.2 micromol/L affinity). 3. Cardiac RyR activation by luminal Ca2+ occurs by a multistep process dubbed 'luminal-triggered Ca2+ feed-through'. Binding of Ca2+ to the L-site initiates brief (1 msec) openings at a rate of up to 10/s. Once the pore is open, luminal Ca2+ has access to the A-site (producing up to 30-fold prolongation of openings) and to the I2-site (causing inactivation at high levels of Ca2+ feed-through). 4. The present paper reviews the evidence for the principal aspects of the 'luminal-triggered Ca2+ feed-through' model, the properties of the various Ca2+-dependent gating mechanisms and their likely role in controlling sarcoplasmic reticulum (SR) Ca2+ release in cardiac muscle. 5. The model makes the following important predictions: (i) there will be a close link between luminal and cytoplasmic regulation of RyRs and any cofactor that prolongs channel openings triggered by cytoplasmic Ca2+ will also promote RyR activation by luminal Ca2+; (ii) luminal Mg2+ (1 mmol/L) is essential for the control of SR excitability in cardiac muscle by luminal Ca2+; and (iii) the different RyR isoforms in skeletal and cardiac muscle will be controlled quite differently by the luminal milieu. For example, Mg2+ in the SR lumen (approximately 1 mmol/L) can strongly inhibit RyR2 by competing with Ca2+ for the L-site, whereas RyR1 is not affected by luminal Mg2+.  相似文献   

2.
Because the net Ca2+ uptake in the sarcoplasmic reticulum (SR) of cardiac muscle is a result of the activity of Ca(2+)-ATPase and of the SR Ca(2+)-release channel, an abnormal Ca2+ uptake may be the result of the dysfunction of either or both structures. The site or sites of action for oxygen-derived free radicals (OFR) damage are unknown, although previous studies on the SR have focused on damage to the Ca2+ pump. Direct effects of OFR on SR Ca(2+)-release channels may be important in understanding their potential contribution to myocardial ischemia/reperfusion injury. We confirmed that superoxide anion radical (O2.-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles. Electron spin resonance study showed that hydroxyl radicals are generated in addition to O2.- from hypoxanthine-xanthine oxidase reaction, and data indicate that O2.- is responsible for the observed effect. Current fluctuations through single Ca(2+)-release channels have been also monitored after incorporation into planar phospholipid bilayers. We directly demonstrate that activation of the channel by O2.- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2.-.  相似文献   

3.
Sudden cardiac death (SCD) remains a major cause of mortality, and despite our knowledge of the causative genetic, molecular and biochemical cellular mechanisms involved, effective therapeutic strategies are lacking. Perturbations in cardiac Ca2+ handling promote arrhythmias and there is enormous interest in developing new anti-arrhythmics aimed at correcting Ca2+ release dysfunction. In particular, abnormal Ca2+ release arising as a result of acquired or genetic defects in cardiac ryanodine receptors (RyR2) has emerged as an important arrhythmogenic trigger in heart failure, and in a devastating genetic arrhythmia syndrome termed catecholaminergic polymorphic ventricular tachycardia (CPVT). Here, we evaluate how experimental insights into RyR2 structure-function are unravelling the precise molecular basis of channel dysfunction and are advancing the development of new therapeutic strategies. We also discuss the functional role of RyR2 in the context of the exquisite synergism existing between numerous cellular components involved in cardiac Ca2+ signalling, and how these complex interactions may be used to design new anti-arrhythmic approaches that target multiple facets of RyR2 regulation.  相似文献   

4.
In the present study, the effects of 3,5-di-t-butylcatechol (DTCAT) on ryanodine receptor Ca(2+) channel (RyRC) of skeletal muscle sarcoplasmic reticulum (SR) vesicles were investigated, both by monitoring extravesicular Ca(2+) concentration directly with the Ca(2+) indicator dye arsenazo III and by studying the high-affinity [(3)H]ryanodine binding. DTCAT stimulated Ca(2+) release from junctional (terminal cisternae) vesicles in a concentration-dependent manner, with a threshold activating concentration of 30 microM and a pEC(50) value of 3.43+/-0.03 M. The release of Ca(2+) induced by DTCAT was antagonized in a concentration-dependent manner by ruthenium red, thus indicating that RyRC is involved in the mechanism of stimulation. A structure-activity relationship analysis carried out on a limited number of compounds suggested that both hydroxy and t-butyl groups in DTCAT were important for the activation of RyRC. DTCAT inhibited [(3)H]ryanodine binding to SR vesicles with a K(i) of 232.5 microM, thus indicating that it acted directly at the skeletal muscle ryanodine receptor binding site to stimulate Ca(2+) release. In conclusion, the ability of DTCAT to release Ca(2+) from TC vesicles of skeletal muscle is noteworthy in view of its possible use as an alternative compound to either caffeine or halothane for performing the "In vitro contracture test" to diagnose the susceptibility of some patients to develop malignant hyperthermia under particular pharmacological treatments.  相似文献   

5.

Background and purpose:

Ca2+-calmodulin (Ca2+CaM) is widely accepted as an inhibitor of cardiac ryanodine receptors (RyR2); however, the effects of physiologically relevant CaM concentrations have not been fully investigated.

Experimental approach:

We investigated the effects of low concentrations of Ca2+CaM (50–100 nmol·L−1) on the gating of native sheep RyR2, reconstituted into bilayers. Suramin displaces CaM from RyR2 and we have used a gel-shift assay to provide evidence of the mechanism underlying this effect. Finally, using suramin to displace endogenous CaM from RyR2 in permeabilized cardiac cells, we have investigated the effects of 50 nmol·L−1 CaM on sarcoplasmic reticulum (SR) Ca2+-release.

Key results:

Ca2+CaM activated or inhibited single RyR2, but activation was much more likely at low (50–100 nmol·L−1) concentrations. Also, suramin displaced CaM from a peptide of the CaM binding domain of RyR2, indicating that, like the skeletal isoform (RyR1), suramin directly competes with CaM for its binding site on the channel. Pre-treatment of rat permeabilized ventricular myocytes with suramin to displace CaM, followed by addition of 50 nmol·L−1 CaM to the mock cytoplasmic solution caused an increase in the frequency of spontaneous Ca2+-release events. Application of caffeine demonstrated that 50 nmol·L−1 CaM reduced SR Ca2+ content.

Conclusions and implications:

We describe for the first time how Ca2+CaM is capable, not only of inactivating, but also of activating RyR2 channels in bilayers in a CaM kinase II-independent manner. Similarly, in cardiac cells, CaM stimulates SR Ca2+-release and the use of caffeine suggests that this is a RyR2-mediated effect.  相似文献   

6.
Acetaminophen hepatotoxicity is mediated by an initial metabolic activation and covalent binding of drug metabolites to liver proteins. Acetaminophen metabolites have been shown to affect rat liver microsomal Ca2+ stores, but the mechanism is not well understood. The aim of the current work was to find out if the metabolism of acetaminophen by CYP2E1 affects ryanodine-sensitive Ca2+ stores in the endoplasmic reticulum of transduced HepG2 cells. Five millimoles acetaminophen decreased proliferation of CYP2E1-overexpressing HepG2 cells, increased cytosolic Ca2+ levels and produced significant cytotoxicity, while only little, mostly anti-proliferative effects were found in HepG2 cells lacking CYP2E1. CYP2E1 inhibitor-4-methylpyrazole decreased drug cytotoxicity in transduced cells and normalized elevated Ca2+ levels. Acetaminophen cytotoxicity was significantly higher in CYP2E1 expressing cells with depleted glutathione. In the cells engineered to overexpress CYP2E1, an increased [3H]ryanodine affinity (by 45%) and increased ligand maximal binding to ryanodine receptors (by 64%) was observed, most probably due to increased association rate of [3H]ryanodine. Ca2+ loading was decreased by about 53% in microsomal fractions isolated from transduced cells treated with acetaminophen and by 92% in glutathione depleted transfected cells treated with the drug. Ca2+/Mg2+-ATPase activity was unchanged in all microsomal fractions. Such effects were not observed in cells lacking CYP2E1. Our results confirm significant role of CYP2E1 in metabolic activation of acetaminophen and indicate that ryanodine receptors located in the liver endoplasmic reticulum are sensitive targets for acetaminophen metabolites.  相似文献   

7.
The effect of BayK 8644, a chemical widely used to activate L‐type Ca2+ channels, on cytosolic free Ca2+ concentrations ([Ca2+]i) in human oral cancer cells (OC2) has not been explored to date. The present study examined whether BayK 8644 altered basal [Ca2+]i levels in suspended OC2 cells by using fura‐2. BayK 8644 (10 pM–10 µM) increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. BayK 8644‐induced Ca2+ influx was blocked by nifedipine, but was not altered by the store‐operated Ca2+ entry inhibitors, econazole and SKF96365; protein kinase C modulators phorbol 12‐myristate 13‐acetate (PMA) and GF109203X; the protein kinase A inhibitor H89; and the phospholipase A2 inhibitor, aristolochic acid. In Ca2+‐free medium, after pretreatment with 1 µM BayK 8644, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pretreatment abolished BayK 8644‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change BayK 8644‐induced [Ca2+]i rises. Collectively, in OC2 cells, BayK 8644 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via L‐type Ca2+ channels. Drug Dev Res 69: 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
9.
1. Haloperidol is a drug used in the management of several psychotic disorders and its use has been linked to Neuroleptic Malignant Syndrome. In the present study we have investigated the effect of a commercial preparation of haloperidol, Serenase, on skeletal muscle sarcoplasmic reticulum. 2. Addition of Serenase to isolated terminal cisternae caused a rapid release of calcium. We tested whether the active Ca(2+)-releasing substance was haloperidol or another compound present in the preparation. 3. Our results show that methyl p-hydroxybenzoate, one of the preservatives and a commonly used anti-microbial agent (E-218) is an activator of Ca(2+) release (E.C. 50=2.0 mM), mediated by a ruthenium red-sensitive Ca(2+) release channel present in skeletal muscle terminal cisternae.  相似文献   

10.
Kinetic and equilibrium measurements of [3H]ryanodine binding to the Ca2+ release channel of rabbit skeletal and rat cardiac sarcoplasmic reticulum (SR) are examined to ascertain the nature of cooperative interactions among high and low affinity binding sites and to quantitate their distribution. Equilibrium studies reveal affinities of 1-4 nM for the highest affinity binding site and of 30-50 nM, 500-800 nM, and 2-4 microM for the lower affinity sites in both preparations, with Hill coefficients of significantly less than 1, and initial rates of association and dissociation increase with increasing concentrations of ryanodine. SR vesicles are actively loaded in the presence of pyrophosphate, and fluctuations in extravesicular Ca2+ are measured by the absorbance change of antipyrylazo III. The data demonstrate a biphasic, time- and concentration-dependent action of ryanodine on the release of Ca2+, with an initial activation and a subsequent inactivation phase. Kinetic analysis of the activation of Ca2+ release by ryanodine, in consonance with the binding data, demonstrates the existence of multiple binding sites for the alkaloid on the channel complex, with nanomolar to micromolar affinities. Based on the present findings obtained by receptor binding analysis and Ca2+ transport measurements, we suggest a model that describes four, most plausibly negatively cooperative, binding sites on the Ca2+ release channel. Occupation of ryanodine binding sites produces sequential activation followed by inactivation of the SR channel, revealing the strong possibility of an irreversible uncoupling of the native function of the receptor/channel complex by high concentrations of ryanodine. A model relating ryanodine receptor occupancy with SR Ca2+ release stresses two important new findings regarding the interaction of ryanodine with its receptor. First, ryanodine binds to four sites on the oligomeric channel complex with decreasing affinities, which can be best described by allosteric negative cooperativity. Second, binding of ryanodine to its receptor activates the Ca2+ release channel in a concentration-dependent and saturable manner in the range of 20 nM to 1 mM and produces a kinetically limited and sequential inactivation of the Ca2+ channel, with the concomitant attainment of full negative cooperativity. The results presented suggest that driving of the complex toward full negative cooperativity with high concentrations of ryanodine promotes a long-lived conformational state in which ryanodine is physically occluded and hindered from free diffusion from its binding site.  相似文献   

11.
12.
Ca~(2+)平衡是维持心肌细胞正常电生理活动的重要前提。在各种机制中,肌质网Ca-ATPase与肌膜Na/Ca交换蛋白对于维持胞内Ca~(2+)的平衡发挥主要作用。其中肌膜Na/Ca交换蛋白是Ca~(2+)排出胞外的主要途径,并通过调节细胞内静息状态下[Ca~(2+)]调节肌质网的[Ca(2+)]含量,从而调节心肌细胞的收缩力。少量Ca(2+)内流入胞后可触发肌质网释放大量Ca(2+)(CICR)。已证实动作电位峰电位及平台期有Ca(2+)通过Na/Ca内流,这种除极化诱导的Ca(2+)经Na/Ca内流可能是触发CICR的主要因素。总之Na/Ca交换蛋白在兴奋-收缩耦联中的作用需要重新加以评价。  相似文献   

13.

BACKGROUND AND PURPOSE

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca2+ concentration ([Ca2+]i). Although it is well-appreciated that the myocyte Ca2+ signalling system is composed of microdomains, little is known about the structure of the [Ca2+]i responses induced by P2X receptor stimulation in vascular myocytes.

EXPERIMENTAL APPROACHES

Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca2+ signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP).

KEY RESULTS

RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP3R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca2+]i transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L−1αβ-meATP triggered an abrupt Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum enriched with IP3Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca2+ channels (VGCCs) or IP3Rs suppressed the sub-plasmalemmal [Ca2+]i upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP3R inhibition on the sub-plasmalemmal [Ca2+]i upstroke was attenuated following block of VGCCs.

CONCLUSIONS AND IMPLICATIONS

Depolarization of RVSMCs following P2X receptor activation induces IP3R-mediated Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum, which is activated mainly by Ca2+ influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.  相似文献   

14.
SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline), a novel and selective inhibitor of Na+/Ca2+ exchanger, was investigated for its possible antiarrhythmic effects on arrhythmias of Ca2+ overload induced by coronary ligation/reperfusion and by digitalis in the dog. SEA0400 (1.0 mg/kg) did not change the hemodynamics but slightly prolonged the QRS duration (P<0.05). Pre-ischemic administration (10 min before coronary occlusion) of SEA0400 (1.0 mg/kg) and post-ischemic administration (1 min before reperfusion) of SEA0400 (0.3, 1.0 and 3.0 mg/kg) had no effects on the incidence of ventricular fibrillation induced by coronary ligation/reperfusion. On the other hand, SEA0400 (3.0 mg/kg) decreased the arrhythmic ratio in the digitalis arrhythmias (P<0.01). However, atrioventricular block and cardiac standstill were induced in two digitalized dogs. In conclusion, SEA0400 has no significant antiarrhythmic effect on arrhythmias induced by coronary ligation/reperfusion, but has an obvious suppressing effect on tachyarrhythmias induced by digitalis in in vivo canine models.  相似文献   

15.
Smooth muscle is activated by plasma-membrane-acting agonists that induce inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] to release Ca(2+) from the intracellular sarcoplasmic reticulum (SR) Ca(2+) store. Increased concentrations of agonist evoke a concentration-dependent graded release of Ca(2+) in a process called 'quantal' Ca(2+) release. Such a graded release seems to be incompatible with both the finite capacity of the SR store and the positive-feedback Ca(2+)-induced Ca(2+) release (CICR)-like process that is operative at Ins(1,4,5)P(3) receptors, which - once activated - might be expected to deplete the entire store. Proposed explanations of quantal release include the existence of multiple stores, each with different sensitivities to Ins(1,4,5)P(3), or Ins(1,4,5)P(3) receptor opening being controlled by the Ca(2+) concentration within the SR. Here, we suggest that the regulation of Ins(1,4,5)P(3) receptors by the Ca(2+) concentration within the SR explains the quantal Ca(2+)-release process and the apparent existence of multiple Ca(2+) stores in smooth muscle.  相似文献   

16.
1. 4,6-Dibromo-3-hydroxycarbazole (DBHC) was synthesized as an analogue of bromoeudistomin D (BED), a powerful Ca2+ releaser, and its pharmacological properties were examined. 2. In Ca2+ electrode experiments, DBHC (100 microM) markedly inhibited Ca2+ release from the heavy fraction of sarcoplasmic reticulum (HSR) induced by caffeine (1 mM) and BED (10 microM). 3. DBHC (0.1 to 100 microM) inhibited 45Ca2+ release induced by Ca2+ from HSR in a concentration-dependent manner. 4. DBHC (100 microM) abolished 45Ca2+ release induced by caffeine (1 mM) and BED (10 microM) in HSR. 5. Inhibitory effects of calcium-induced calcium release (CICR) blockers such as procaine, ruthenium red and Mg2+ on 45Ca2+ release were clearly observed at Ca2+ concentrations from pCa 7 to pCa 5.5, and were decreased at Ca2+ concentrations higher than pCa 5.5 or lower than pCa 7. However, DBHC decreased Ca2+ release induced by Ca2+ over the wide range of extravesicular Ca2+ concentrations. 6. [3H]-ryanodine binding to HSR was suppressed by ruthenium red, Mg2+ and procaine, but was not affected by DBHC up to 100 microM. 7. [3H]-ryanodine binding to HSR was enhanced by caffeine and BED. DBHC antagonized the enhancement in a concentration-dependent manner. 8. 9-[3H]-Methyl-7-bromo-eudistomin D, an 3H-labelled analogue of BED, specifically bound to HSR. Both DBHC and caffeine increased the KD value without affecting the Bmax value, indicating a competitive mode of inhibition. 9. These results suggest that DBHC binds to the caffeine binding site to block Ca2+ release from HSR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The increase in cytoplasmic Ca(2+) concentration (Δ[Ca(2+)](c)) mediated by the Ca(2+)-release-activated Ca(2+) channel (CRAC) is a critical signal for the activation of lymphocytes. Also, the voltage-gated K(+) channel (K(v)) and intermediate-conductance Ca(2+)-activated K(+) channel (IKCa1/SK4) have drawn attention as pharmacological targets for regulating immune responses. Since polyphenolic agents have various immunomodulatory effects, here we compared the effects of curcumin, rosmarinic acid, resveratrol, and epigallocatechin gallate on the ionic currents through CRAC (I(CRAC)), K(v) (I(Kv)), SK4 (I(SK4)) and on the Δ[Ca(2+)](c) of Jurkat-T cells using the patch clamp technique and fura-2 spectrofluorimetry. Curcumin (10 μM) inhibited store-operated Ca(2+) entry (SOCE). Consistently, dose-dependent inhibition of I(CRAC) by curcumin was confirmed in Jurkat-T (IC(50), 5.9 μM) and the HEK293 cells overexpressing Orai1 and STIM1 (IC(50), 0.6 μM). Also, curcumin inhibited both I(Kv) (IC(50), 11.9 μM) and I(SK4) (IC(50), 4.2 μM). The other polyphenols (rosmarinic acid, resveratrol, and epigallocatechin gallate at 10 - 30 μM) had no effect on SOCE and showed only a partial inhibition of the K(+) currents. In summary, among the tested polyphenolic agents, curcumin showed prominent inhibition of major ion channels in lymphocytes, which might contribute to the anti-inflammatory effects of curcumin. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10209FP].  相似文献   

18.
Effects of amino acid replacement at the channel pore mouth of P2X(2) receptor/channel on multivalent cation channel block were investigated. When Asn(333) was replaced with various amino acid residues with neutral side chains (Gly, Ala, Val, Leu and Ile), the block by Ca(2+) was attenuated according to the sizes of the side chains. The block by La(3+) was also greatest with the Gly-substituted mutant, but this preference was not found for the block by other multivalent cations tested. The side chain at the channel pore mouth may interfere with the access of Ca(2+) block by steric hindrance.  相似文献   

19.
Interleukin-1beta (IL-1beta) plays an important role in neuroprotective and neurodegenerative events in the central nervous system. To clarify the mechanism of controversial actions of IL-1beta, we determined the effect of IL-1beta, as well as the interaction between IL-1beta and Ca(2+)-induced Ca2+ releasing system (CICR), on adenosine releases in mice hippocampus using mini-slices method. Basal and K(+)-stimulated adenosine releases were regulated by two types of CICRs, including inositol-1,4,5-trisphosphate (IP3) receptor and ryanodine receptor. Lower concentration of IL-1beta increased both adenosine releases, whereas higher concentration did not affect their releases. The stimulatory effect of IL-1beta on basal adenosine release was reduced by removal of extracellular Ca2+ and IP3 receptor inhibitor, while the stimulatory effect of IL-1beta on K(+)-stimulated adenosine release was reduced by ryanodine receptor inhibitor. These results suggest that the potent effect of IL-1beta upon adenosine release might contribute to the neuroprotective action of IL-1beta, whereas IL-1beta-induced neurodegeneration might be due to the overload response of Ca2+ mobilization and the inactivation of adenosine exocytosis.  相似文献   

20.
Store-operated Ca(2+) entry (SOCE) is a major pathway for Ca(2+) influx in non-excitable cells. Recent studies favour a conformational coupling mechanism between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and Ca(2+) permeable channels in the plasma membrane to explain SOCE. Previous studies have reported a role for the cytoskeleton modulating the activation of SOCE; therefore, here we have investigated whether the interaction between STIM1 and the Ca(2+) permeable channels is modulated by the actin or microtubular network. In HEK-293 cells, treatment with the microtubular disrupter colchicine enhanced both the activation of SOCE and the association between STIM1 and Orai1 or TRPC1 induced by thapsigargin (TG). Conversely, stabilization of the microtubules by paclitaxel attenuated TG-evoked activation of SOCE and the interaction between STIM1 and the Ca(2+) channels Orai1 and TRPC1, altogether suggesting that the microtubules act as a negative regulator of SOCE. Stabilization of the cortical actin filament layer results in inhibition of TG-evoked both association between STIM1, Orai1 and TRPC1 and SOCE. Interestingly, disruption of the actin filament network by cytochalasin D did not significantly modify TG-evoked association between STIM1 and Orai1 or TRPC1 but enhanced TG-stimulated SOCE. Finally, inhibition of calmodulin by calmidazolium enhances TG-evoked SOCE and disruption of the actin cytoskeleton results in inhibition of TG-evoked association of calmodulin with Orai1 and TRPC1. Thus, we demonstrate that the cytoskeleton plays an essential role in the regulation of SOCE through the modulation of the interaction between their main molecular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号