首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Rabbit ventricular myocardium is characterized by a biphasic response to stretch with an initial, rapid increase in force followed by a delayed, slow increase in force (slow force response, SFR). The initial phase is attributed to increased myofilament Ca(2+) sensitivity, but the mechanisms of the delayed phase are only incompletely understood. We tested whether stretch-dependent stimulation of Na(+)/H(+) exchange (NHE1) and consecutive changes in pH(i) and/or [Na(+)](i) may underlie the SFR. METHODS: Isometric contractions of rabbit ventricular muscles were recorded in bicarbonate-containing Tyrode's (Tyrode) or bicarbonate-free HEPES-buffered solution (HEPES). Muscles were loaded with the Ca(2+) indicator aequorin, the pH indicator BCECF, or the Na(+) indicator SBFI and rapidly stretched from 88% (L(88)) to 98% (L(98)) of optimal length. The resulting immediate and slow increases in twitch force (1st phase and SFR) as well as changes in [Ca(2+)](i), [Na(+)](i), or pH(i) were quantified before and after inhibition of NHE1 by HOE 642 (3 microM) or reverse-mode Na(+)/Ca(2+) exchange (NCX) by KB-R 7943 (5 microM). RESULTS: In both Tyrode (n=21) and HEPES (n=22), developed force increased to approximately 160% during the 1st phase followed by a further increase to approximately 205% during the SFR. The SFR was accompanied by a 21% increase of the aequorin light transient (n=4; normalized to the 1st phase) and a approximately 3 mM increase in [Na(+)](i) (n=4-7). The SFR was also associated with an increase in pH(i). However, this increase was delayed and was significant only after the SFR had reached its maximum. The delayed pH(i) increase was larger in HEPES than in Tyrode. HOE 642 and/or KB-R 7943 reduced the SFR by approximately 30-40%. In addition, HOE 642 diminished the stretch-mediated elevation of [Na(+)](i) by 72% and the delayed alkalinization. CONCLUSIONS: The data are consistent with the hypothesis that SFR results from increases in [Ca(2+)](i) secondary to altered flux via NCX in part resulting from increases in [Na(+)](i) mediated by NHE1.  相似文献   

2.
OBJECTIVE: This work was aimed to prove that release/formation of endogenous endothelin acting in an autocrine/paracrine fashion contributes to the increase in contractility promoted by a low dose of angiotensin II. METHODS: Isolated cat papillary muscles were used for force, pH(i), [Na(+)](i) and [Ca(2+)](i) measurements and isolated cat myocytes for patch-clamp experiments. RESULTS: In papillary muscles, 1.0 nmol/l angiotensin II increased force by 23+/-2% (n=4, P<0.05), [Na(+)](i) by 2.2+/-0.2 mmol/l (n=4, P<0.05), and peak (but not diastolic) Ca(2+) from 0.674+/-0.11 to 0.768+/-0.13 micromol/l (n=4, P<0.05), without affecting pH(i). Force and [Na(+)](i) increase were abolished by inhibition of the Na(+)/H(+) exchanger (NHE) with the inhibitor HOE642, blockade of endothelin receptors with the nonselective antagonist TAK044 and by inhibition of the endothelin-converting enzyme with phosphoramidon. Force but not [Na(+)](i) increase was abolished by inhibition of reverse Na(+)/Ca(2+) exchange (NCX) with the inhibitor KB-R7943. Similar increase in force (21+/-2%, n=4, P<0.05) and in [Na(+)](i) (2.4+/-0.4 mmol/l, n=4, P<0.05) that were also suppressed by TAK044 and HOE642 were induced by exogenous 5.0 nmol/l endothelin-1. KB-R7943 reverted the endothelin-1 effect on force but not on [Na(+)](i). In isolated myocytes, exogenous endothelin-1 dose-dependently increased the NCX current and shifted the NCX reversal potential (E(NCX)) to a more negative value (DeltaE(NCX): -10+/-3 and -17+/-5 mV, with 1 and 10 nmol/l endothelin-1, respectively, n=12). The latter effect was prevented by HOE642. CONCLUSION: Taken together, the results indicate that a low dose of angiotensin II induces release of endothelin, which, in autocrine/paracrine fashion activates the Na(+)/H(+) exchanger, increases [Na(+)](i) and changes E(NCX), promoting the influx of Ca(2+) that leads to a positive inotropic effect (PIE).  相似文献   

3.
AIMS: Stretch is an important regulator of atrial function. The functional effects of stretch on human atrium, however, are poorly understood. Thus, we characterized the stretch-induced force response in human atrium and evaluated the underlying cellular mechanisms. METHODS AND RESULTS: Isometric twitch force of human atrial trabeculae (n = 252) was recorded (37 degrees C, 1 Hz stimulation) following stretch from 88 (L88) to 98% (L98) of optimal length. [Na(+)](i) and pH(i) were measured using SBFI and BCECF epifluorescence, respectively. Stretch induced a biphasic force increase: an immediate increase [first-phase, Frank-Starling mechanism (FSM)] to approximately 190% of force at L88 followed by an additional slower increase [5-10 min; slow force response (SFR)] to approximately 120% of the FSM. FSM and SFR were unaffected by gender, age, ejection fraction, and pre-medication with major cardiovascular drugs. There was a positive correlation between the amplitude of the FSM and the SFR. [Na(+)](i) rose by approximately 1 mmol/L and pH(i) remained unchanged during the SFR. Inhibition of Na(+)/H(+)-exchange (3 microM HOE642), Na(+)/Ca(2+)-exchange (5 microM KB-R7943), or stretch-activated channels (0.5 microM GsMtx-4 and 80 microM streptomycin) did not reduce the SFR. Inhibition of angiotensin-II (AngII) receptors (5 microM saralasin and 0.5 microM PD123319) or pre-application of 0.5 microM AngII, however, reduced the SFR by approximately 40-60%. Moreover, stretch increased phosphorylation of myosin light chain 2 (MLC2a) and inhibition of MLC kinase (10 microM ML-7 and 5 microM wortmannin) decreased the SFR by approximately 40-85%. CONCLUSION: Stretch elicits a SFR in human atrium. The atrial SFR is mediated by stretch-induced release and autocrine/paracrine actions of AngII and increased myofilament Ca(2+) responsiveness via phosphorylation of MLC2a by MLC kinase.  相似文献   

4.
Previous work demonstrated that the slow force response (SFR) to stretch is due to the increase in calcium transients (Ca2+T) produced by an autocrine-paracrine mechanism of locally produced angiotensin II/endothelin activating Na+-H+ exchange. Although a rise in pHi is presumed to follow stretch, it was observed only in the absence of extracellular bicarbonate, suggesting pHi compensation through the Na+-independent Cl--HCO3- exchange (AE) mechanism. Because available AE inhibitors do not distinguish between different bicarbonate-dependent mechanisms or even between AE isoforms, we developed a functional inhibitory antibody against both the AE3c and AE3fl isoforms (anti-AE3Loop III) that was used to explore if pHi would rise in stretched cat papillary muscles superfused with bicarbonate after AE3 inhibition. In addition, the influence of this potential increase in pHi on the SFR was analyzed. In this study, we present evidence that cancellation of AE3 isoforms activity (either by superfusion with bicarbonate-free buffer or with anti-AE3Loop III) results in pHi increase after stretch and the magnitude of the SFR was larger than when AE was operative, despite of similar increases in [Na+]i and Ca2+T under both conditions. Inhibition of reverse mode Na+-Ca2+ exchange reduced the SFR to the half when the AE was inactive and totally suppressed it when AE3 was active. The difference in the SFR magnitude and response to inhibition of reverse mode Na+-Ca2+ exchange can be ascribed to a pHi-induced increase in myofilament Ca2+ responsiveness.  相似文献   

5.
Endothelin-1 (ET-1) is a potent agonist of cell growth that also stimulates Na(+)/H(+) exchanger isoform 1 (NHE-1) activity. It was hypothesized that the increase in intracellular Na(+) ([Na(+)](i)) mediated by NHE-1 activity may induce the reverse mode of Na(+)/Ca(2+) exchanger (NCX(rev)) increasing intracellular Ca(2+) ([Ca(2+)](i)) which in turn will induce hypertrophy. The objective of this work was to test whether the inhibition of NHE-1 or NCX(rev) prevents ET-1 induced hypertrophy in neonatal rat cardiomyocytes (NRVMs). NRVMs were cultured (24 h) in the absence (control) and presence of 5 nmol/L ET-1 alone, or combined with 1 mumol/L HOE 642 or 5 mumol/L KB-R7943. Cell surface area, (3)H-phenylalanine incorporation and atrial natriuretic factor (ANF) mRNA expression were increased to 131 +/- 3, 220 +/- 12 and 190 +/- 25% of control, respectively (P < 0.05) by ET-1. [Na(+)](i) and total [Ca(2+)](i) were higher (8.1 +/- 1.2 mmol/L and 636 +/- 117 nmol/L, respectively) in ET-1-treated than in control NRVMs (4.2 +/- 1.3 and 346 +/- 85, respectively, P < 0.05), effects that were cancelled by NHE-1 inhibition with HOE 642. The rise in [Ca(2+)](i) induced by extracellular Na(+) removal (NCX(rev)) was higher in ET-1-treated than in control NRVMs and the effect was prevented by co-treatment with HOE 642 or KB-R7943 (NCX(rev) inhibitor). The ET-1-induced increase in cell area, ANF mRNA expression and (3)H-phenylalanine incorporation in ET-1-treated NRVM were decreased by NHE-1 or NCX(rev) inhibition. Our results provide the first evidence that NCX(rev) is, secondarily to NHE-1 activation, involved in ET-1-induced hypertrophy in NRVMs.  相似文献   

6.
Diabetes mellitus is a risk factor for heart failure. Increased reactive oxygen species (ROS) have been proposed as a possible mechanism of cardiac dysfunction in diabetic patients. However, the mechanisms of ROS increase are still elusive. We hypothesized that activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) induced by impaired intracellular Ca(2+) ([Ca(2+)](i)) metabolism may stimulate ROS production in the diabetic heart. Cultured cardiomyocytes from neonatal rats were exposed to high glucose concentrations (25 mmol/L) and ROS levels were analyzed in 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H(2)DCFDA)-loaded cells by flow cytometry analysis. Exposure to high glucose concentrations for 24h significantly increased CM-H(2)DCFDA fluorescence, which was significantly inhibited by 1,2-bis (o-aminophenoxy) ethane- N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM), a [Ca(2+)](i) chelator, and KB-R7943, an inhibitor of the Na(+)-Ca(2+) exchanger (NCX) in the reverse mode. These results indicate that [Ca(2+)](i) increase by NCX activation may induce ROS increase following exposure to high glucose concentrations. We confirmed that exposure to high glucose concentrations significantly increased [Ca(2+)](i), which was inhibited by KB-R7943. Na(+)-H(+) exchanger (NHE) is a key factor in [Ca(2+)](i) metabolism, and is known to activate NCX by increasing the intracellular Na(+) ([Na(+)](i)) level. We showed that the expression of NHE isoform 1 and NHE activity increased following exposure to high glucose concentrations by evaluating protein expressions and intracellular pH recovery from acid loading. Exposure to high glucose concentrations up-regulated phosphorylated CaMKII expression in cardiomyocytes that was inhibited by KB-R7943. Further, autocamtide 2-related inhibitory peptide (AIP), a CaMKII inhibitor, significantly attenuated the ROS increase following exposure to high glucose concentrations. We confirmed these results obtained in in vitro experiments in an animal model of diabetes. ROS level and components of NADPH oxidase, p47phox and p67phox were up-regulated in streptozotocin-induced diabetic rat heart, which were attenuated by KN-93, a CaMKII inhibitor. Consistently, expression of phosphorylated CaMKII was increased in the diabetic heart. Activation of CaMKII by impaired [Ca(2+)](i) metabolism may be a mechanism of ROS increase in the heart with diabetes mellitus.  相似文献   

7.
Anti-oxidant effects of estrogen reduce [Ca2+]i during metabolic inhibition   总被引:2,自引:0,他引:2  
We previously reported that 17beta-estradiol (betaE2) inhibits the rise in [Ca(2+)](i) and [Na(+)](i) during metabolic inhibition (MI) in mouse cardiomyocytes, but the mechanism has not yet been clarified. Estrogen has been reported to have anti-oxidant properties. We, therefore, have investigated whether interaction with the estrogen receptor (ER) is involved, or whether estrogen reduces free-radical-induced impairment of Na(+)-K(+) ATPase in cardiac myocytes, and whether this effect reduces [Ca(2+)](i) rise. Male mouse ventricular myocytes were studied. Flow cytometry was used with fluo-3 for [Ca(2+)](i) measurement. Dead cells were excluded from analysis by propidium iodide fluorescence. betaE2 reduced the increase in [Ca(2+)](i) during MI even in the presence of the ER blocker tamoxifen. A similar effect on [Ca(2+)](i) was produced by its non-estrogenic isomer, betaE2-estradiol. Other hormones (estrone and estriol) with a phenolic structure also inhibited Ca(2+) overload during MI, but testosterone without the structure did not. The betaE2 effect was attenuated by inhibition of Na(+)-Ca(2+) exchanger (KB-R7943) or Na(+)-K(+) ATPase (low K(+) or ouabain), but not by block of L-type Ca(2+) channel (nifedipine). Tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid), a superoxide scavenger, decreased the rise in [Ca(2+)](i) and abolished the betaE2 effect during MI. We conclude that the acute cardioprotective effect of estrogen during MI may be mediated by an ER-independent anti-oxidant action, which results in improved function of Na(+)-K(+) ATPase.  相似文献   

8.
This study aimed to explore the signaling pathways involved in the positive inotropic effect (PIE) of low doses of endothelin-1 (ET-1). Cat papillary muscles were used for force and intracellular Na(+) concentration (Na(+)(i)) measurements, and isolated cat ventricular myocytes for patch-clamp experiments. ET-1 (5 nmol/L) induced a PIE and an associated increase in Na(+)(i) that were abolished by Na(+)/H(+) exchanger (NHE) inhibition with HOE642. Reverse-mode Na(+)/Ca(2+) exchanger (NCX) blockade with KB-R7943 reversed the ET-1-induced PIE. These results suggest that the ET-1-induced PIE is totally attributable to the NHE-mediated Na(+)(i) increase. However, an additional direct stimulating effect of ET-1 on NCX after the necessary increase in Na(+)(i) could occur. Thus, the ET-1-induced increase in Na(+)(i) and contractility was compared with that induced by partial inhibition of the Na(+)/K(+) ATPase by lowering extracellular K(+) (K(+)(o)). For a given Na(+)(i), ET-1 induced a greater PIE than low K(+)(o). In the presence of HOE642 and after increasing contractility and Na(+)(i) by low K(+)(o), ET-1 induced an additional PIE that was reversed by KB-R7943 or the protein kinase C (PKC) inhibitor chelerythrine. ET-1 increased the NCX current and negatively shifted the NCX reversal potential (E(NCX)). HOE642 attenuated the increase in NCX outward current and abolished the E(NCX) shift. These results indicate that whereas the NHE-mediated ET-1-induced increase in Na(+)(i) seems to be mandatory to drive NCX in reverse and enhance contractility, Na(+)(i)-independent and PKC-dependent NCX stimulation appears to additionally contribute to the PIE. However, it is important to stress that the latter can only occur after the primary participation of the former.  相似文献   

9.
To test the hypothesis that the reverse mode of the Na+/Ca2+ exchange augmented by a rapid heart rate has an antiarrhythmic effect by shortening the action potential duration, we examined the effects of KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl] isothiourea methanesulfonate), a selective inhibitor of the reverse mode of the Na+/Ca2+ exchange, to attenuate this effect. We recorded the electrocardiogram, monophasic action potential (MAP), and left ventricular pressure in canine beating hearts. In comparison to the control, KB-R7943 significantly increased the QTc value and MAP duration. MAP alternans and left ventricular pressure alternans were observed after changing the cycle length to 300 milliseconds in the control studies. KB-R7943 magnified both types of alternans and produced spatially discordant alternans between right and left ventricles. Early after-depolarizations and nonsustained ventricular tachycardia occurred in the presence of KB-R7943. Our data suggest that the reverse mode of the Na+/Ca2+ exchange may contribute to suppression of arrhythmias by abbreviating action potential duration under pathophysiological conditions. This conclusion is based on further confirmation by future studies of the specificity of KB-R7943 for block of the reverse mode of the Na+/Ca2+ exchange.  相似文献   

10.
The L-type Ca2+ current (I(Ca,L)) plays an important role in the regulation of cardiac contractility. However, there is little data with regard to the significance of the I(Ca,L)-independent mechanism of beta-adrenoceptor mediated positive inotropy. The effects of isoproterenol (ISO) on I(Ca,L) and contractility in the presence of Ca2+ channel blockers (nifedipine, verapamil) were examined in adult mouse ventricular myocytes. ISO increased contractility over the level before the administration of Ca2+ channel blocker, although it had a very limited effect on I(Ca,L). The positive inotropy of ISO disappeared after administration of Ni2+, an inhibitor of the Na+-Ca2+ exchanger. The addition of ISO after nifedipine pretreatment also increased the [Ca2+]i transient over the control level and the application of Ni2+ or KB-R7943, a selective Na+-Ca2+ exchange inhibitor (reverse mode), abolished the increase in [Ca2+]i transient. Therefore, an I(Ca,L)-independent mechanism plays a significant role in beta-adrenoceptor mediated positive inotropy. The Na+-Ca2+ exchanger is necessary for the development of this action.  相似文献   

11.
The role of the Na+-Ca2+ exchanger as a major determinant of cell Ca2+ is well defined in cardiac tissue, and there has been much effort to develop specific inhibitors of the exchanger. We use a novel system to test the specificity of two putative specific inhibitors, KB-R7943 and SEA0400. The drugs are applied to electrically stimulated heart tubes from control mouse embryos or embryos with the Na+-Ca2+ exchanger knocked out. We monitored effects of the drugs on Ca2+ transients. Both drugs depress the Ca2+ transients at low concentrations even in the absence of any Na+-Ca2+ exchanger. KB-R7943 and SEA0400 are not completely specific and should be used with caution as Na+-Ca2+ exchange inhibitors.  相似文献   

12.
OBJECTIVE: Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. METHODS: Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. RESULTS: On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. CONCLUSIONS: The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.  相似文献   

13.
OBJECTIVE: Contractions of isolated, single myocytes of guinea pig heart stimulated at 37 degrees C consist of a phasic component and a voltage dependent tonic component. In this study we investigated the source of Ca(2+) activating the tonic component. METHODS: Experiments were performed at 37 degrees C in ventricular myocytes of guinea pig heart. Voltage-clamped cells were stimulated by the pulses from the holding potential of -40 to +5 mV. [Ca(2+)](i) was monitored as fluorescence of Indo 1-AM and contractions were recorded with the TV edge-tracking system. RESULTS: Superfusion of 5 mmol/l Ni(2+) during 30 s pause did not inhibit subsequent biphasic Ca(2+) transients and contractions despite inhibition of Ca(2+) current and Na(+)/Ca(2+) exchange. KB-R7943 (5 micromol/l) or intracellular dialysis with 0 Na(+) solution, both of which inhibit reversed Na(+)/Ca(2+) exchange, decreased amplitude of Ca(2+) transients and contractions by approximately 40%. The ratio of amplitudes of tonic to phasic component was increased by Ni(2+) and was not changed by KB-R7943 or 0 Na(+)(i). Ryanodine (200 micromol/l) inhibited both components of contractions in cells superfused with Ni(2+). The phasic component but not the tonic component was inhibited by 20 micromol/l nifedipine in cells superfused with Ni(2+). CONCLUSIONS: Tonic component of contraction of single myocytes of guinea pig heart is not activated by Ca(2+) current or by the reverse mode Na(+)/Ca(2+) exchange as currently proposed in literature. Rather, it is activated by Ca(2+) released from the sarcoplasmic reticulum. However, kinetics and mechanism of release seem to be quite different from those of Ca(2+) fraction activating the phasic component of contraction.  相似文献   

14.
OBJECTIVE: There is recent evidence that Ca(2+) influx via reverse mode Na(+)/Ca(2+) exchange (NCX) at the time of reperfusion can contribute to cardiomyocyte hypercontracture. However, forward NCX is essential for normalization of [Ca(2+)](i) during reperfusion, and its inhibition may be detrimental. This study investigates the effect of NCX inhibition with KB-R7943 at the time of reperfusion on cell viability. METHODS: The effect of several concentrations of KB-R7943 added at reperfusion was studied in Fura-2 loaded quiescent cardiomyocytes submitted to 40 min of simulated ischemia (NaCN 2 mM, pH 6.4), and in rat hearts submitted to 60 min of ischemia. [Ca(2+)](i) and cell length were monitored in myocytes, and functional recovery and LDH release in isolated hearts. From these experiments an optimal concentration of KB-R7943 was identified and tested in pigs submitted to 48 min of coronary occlusion and 2 h of reperfusion. RESULTS: In myocytes, KB-R7943 at concentrations up to 15 microM reduced [Ca(2+)](i) rise and the probability of hypercontracture during re-energization (P<0.01). Nevertheless, in rat hearts, the effects of KB-R7943 applied during reperfusion after 60 min of ischemia depended on concentration and timing of administration. During the first 5 min of reperfusion, KB-R7943 (0.3-30 microM) induced a dose-dependent reduction in LDH release (half-response concentration 0.29 microM). Beyond 6 min of re-flow, KB-R7943 had no effect on LDH release, except at concentrations > or = 15 microM, which increased LDH. KB-R7943 at 5 microM given during the first 10 min of reflow reduced contractile dysfunction (P=0.011), LDH release (P=0.019) and contraction band necrosis (P=0.014) during reperfusion. Intracoronary administration of this concentration during the first 10 min of reperfusion reduced infarct size by 34% (P=0.033) in pigs submitted to 48 min of coronary occlusion. CONCLUSIONS: These results are consistent with the hypothesis that during initial reperfusion NCX activity results in net reverse mode operation contributing to Ca(2+) overload, hypercontracture and cell death, and that NCX inhibition during this phase is beneficial. Beyond this phase, NCX inhibition may impair forward mode-dependent Ca(2+) extrusion and be detrimental. These findings may help in the design of therapeutic strategies against lethal reperfusion injury, with NCX as the target.  相似文献   

15.
Intracellular free Mg(2+) concentration is maintained at low levels by active extrusion from the cells. One of postulated mechanisms is the Na(+)-Mg(2+) exchange, which extrudes Mg(2+) in exchange with Na(+) influx. Although the Na(+)-Mg(2+) exchange activity has been reported in many types of cell, including neurons, details of molecular mechanisms are only poorly understood. In this chapter, we briefly will review our current knowledge on [1] stoichiometry of the Na(+)-Mg(2+) exchange, [2] interaction between the Na(+)-Ca(2+) exchange and the Na(+)-Mg(2+) exchange, [3] molecular biology of the Na(+)-Mg(2+) exchanger.  相似文献   

16.
In shark heart, the Na(+)--Ca(2+) exchanger serves as a major pathway for both Ca(2+) influx and efflux, as there is only rudimentary sarcoplasmic reticulum in these hearts. The modulation of the exchanger by a beta-adrenergic agonist in whole-cell clamped ventricular myocytes was compared with that of the Na(+)--Ca(2+) exchanger blocker KB-R7943. Application of 5 microM isoproterenol and 10 microM KB-R7943 suppressed both the inward and the outward Na(+)--Ca(2+) exchanger current (I(Na--Ca)). The isoproterenol effect was mimicked by 10 microM forskolin. Isoproterenol and forskolin shifted the reversal potential (E(rev)) of I(Na--Ca) by approximately -23 mV and -30 mV, respectively. An equivalent suppression of outward I(Na--Ca) by KB-R7943 to that by isoproterenol produced a significantly smaller shift in E(rev) of about --4 mV. The ratio of inward to outward exchanger currents was also significantly larger in isoproterenol- than in control- and KB-R7943-treated myocytes. Our data suggest that the larger ratio of inward to outward exchanger currents as well as the larger shift in E(rev) with isoproterenol results from the enhanced efficacy of Ca(2+) efflux via the exchanger. The protein kinase A-mediated bimodal regulation of the exchanger in parallel with phosphorylation of the Ca(2+) channel and enhancement of its current may have evolved to satisfy the evolutionary needs for accelerated contraction and relaxation in hearts of animals with vestigial sarcoplasmic Ca(2+) release stores.  相似文献   

17.
Na(+)-Ca2+ exchange is proposed to be an important regulator of myoplasmic intracellular Ca2+ concentration ([Ca2+]i) and contraction in vascular smooth muscle. We investigated the role of Na(+)-Ca2+ exchange in regulating [Ca2+]i in swine carotid arterial tissues that were loaded with aequorin to allow simultaneous measurement of [Ca2+]i and force. Reversal of Na(+)-Ca2+ exchange, by reduction of extracellular Na+ concentration ([Na+]o) to 1.2 mM, induced a large increase in aequorin-estimated [Ca2+]i and a low [Ca2+]i sensitivity. The contraction induced by 1.2 mM [Na+]o was partially caused by depolarization and opening of L-type Ca2+ channels because 10 microM diltiazem partially attenuated the 1.2 mM [Na+]o-induced increases in [Ca2+]i. High dose ouabain (10 microM), a putative endogenous Na+,K(+)-ATPase inhibitor, increased both [Ca2+]i and force. However, the increases in [Ca2+]i and force were mostly blocked by 10 microM phentolamine, suggesting the predominant effect of ouabain was to increase norepinephrine release from nerve terminals. In the presence of 10 microM phentolamine, 10 microM ouabain slightly accentuated 1 microM histamine-induced increases in [Ca2+]i and force. The ouabain dose necessary to induce contraction in the absence of phentolamine was significantly less than the ouabain dose necessary to accentuate histamine-induced contractions in the presence of phentolamine. These results suggest that Na(+)-Ca2+ exchange exists in swine arterial smooth muscle. These data also suggest that ouabain (which should increase [Na+]i and inhibit Na(+)-Ca2+ exchange) primarily enhances contractile function in the swine carotid artery by releasing catecholamines from nerve terminals; direct action of Na+,K(+)-ATPase inhibitors on smooth muscle appears to occur only with very high doses.  相似文献   

18.
To elucidate the role of intracellular Na(+) kinetics in the mechanism for ischemic preconditioning (IPC), we measured intracellular Na(+) concentration ([Na(+)](i)) using (23)Na-magnetic resonance spectroscopy in isolated rat hearts. IPC significantly delayed the initial [Na(+)](i) increase (d[Na(+)](i)/dt) compared with non-IPC control, resulting in attenuation of Na(+) accumulation (Delta[Na(+)](i)) during 27 minutes of ischemia with better functional recovery. [Na(+)](i) in IPC, but not in control, recovered to preischemic level during a 6-minute reperfusion. The Na(+)-H(+) exchange inhibitor further suppressed d[Na(+)](i)/dt in both control and IPC hearts with concomitant improvement of functional recovery, suggesting little contribution to the mechanism of IPC. The mitochondrial ATP-sensitive K(+) (mito K(ATP)) channel activator diazoxide (30 micromol/L) completely mimicked both [Na(+)](i) kinetics and functional recovery in IPC without any additive effects to IPC. The mito K(ATP) channel blocker 5-hydroxydecanoic acid (100 micromol/L) lost protective effect as well as the attenuation of d[Na(+)](i)/dt and [Na(+)](i) recovery induced by diazoxide. However, 5-hydroxydecanoic acid also lost IPC-induced protection, but incompletely abolished the alteration of d[Na(+)](i)/dt and the [Na(+)](i) recovery. The Na(+)/K(+)-ATPase inhibitor ouabain (200 micromol/L) did not change d[Na(+)](i)/dt in non-IPC hearts, but it abolished the IPC- or diazoxide-induced reduction of d[Na(+)](i)/dt and the [Na(+)](i) recovery, whereas IPC followed by ouabain treatment showed partial functional recovery with smaller Delta[Na(+)](i) than other ouabain groups. In conclusion, alteration of Na(+) kinetics by preserving Na(+) efflux via Na(+)/K(+)-ATPase mediated by mito K(ATP) channel activation mainly contributes to functional protection in IPC hearts. The contribution of mito K(ATP) channel-independent pathway relating to Na(+) kinetics including reduced Na(+) influx is limited in functional protection of IPC.  相似文献   

19.
OBJECTIVE: Decreased ischemic tolerance in the aged myocardium is associated with accelerated intracellular Ca(2+) overload. However, few drugs have been shown to attenuate reperfusion injury in aged hearts. Because the Na(+)/Ca(2+) exchanger (NCX1) has been reported to play an important role in Ca(2+) overload during reperfusion, we investigated whether KB-R7943 (KB-R), a novel inhibitor of the reverse mode of Na(+)/Ca(2+) exchange, can protect aged rat hearts against reperfusion injury. METHODS: In the pilot study, isolated hearts from young Sprague-Dawley (SD) rats (12 weeks old), and young (12 weeks old) and aged (78 weeks old) Fischer 344 (F) rats were subjected to 25 min of global ischemia followed by 10 min of reperfusion with various concentrations of KB-R (0, 1 nM, 0.1 microM, 10 microM) and additional 20 min of reperfusion without agent. In subsequent studies with the same protocol in aged F rats, we added a protective dose of KB-R (1 nM) during the initial 10 min of reperfusion. In addition, we compared the amount of NCX1 and the sensitivity of the reverse mode of Na(+)/Ca(2+) exchange to KB-R under extracellular Na(+)-free condition in F rats with young SD rats. RESULTS: In the pilot study, protective effects were elicited with 1 nM of KB-R in both young and aged F rats, while 10 microM KB-R was needed for SD rats. In subsequent studies using aged F rats, there was better recovery of LV systolic function and high-energy phosphates with reduced creatine kinase release and the duration of reperfusion arrhythmias. 45Ca(2+) uptake via the reverse mode of Na(+)/Ca(2+) exchange was also inhibited with 1 nM of KB-R in young F rats, but not in young SD rats. Although the amount of NCX1 was not different among young SD, young F, and aged F rat hearts. CONCLUSIONS: These results demonstrated that KB-R could protect aged F rat hearts as well as young hearts of both strains against ischemia-reperfusion injury. Moreover, the sensitivity to KB-R is very different between these strains, suggesting serious caution when the agent is applied to human beings.  相似文献   

20.
OBJECTIVE: Pulmonary veins (PVs) are the most important focus for generation of atrial fibrillation. The Na(+)/Ca(2+) exchange (NCX) current is important in PV electrical activity and cardiac glycosides-induced arrhythmias. The purpose of this study was to investigate whether KB-R7943, a NCX current blocker with preferential inhibition of the Ca(2+) influx, may alter PV electrophysiological characteristics and reduce glycoside-induced arrhythmogenicity. METHODS: Conventional microelectrodes were used to record the effects of KB-R7943 on action potentials and contractility in isolated rabbit PV tissue specimens with and without administration of ouabain. The ionic currents and intracellular calcium were studied in isolated single cardiomyocytes before and after KB-R7943 by the whole-cell patch clamp and indo-1 fluorimetric ratio techniques. RESULTS: KB-R7943 (0, 3, 10, 30 microM) concentration-dependently prolonged APD(50) and APD(90) and decreased the PV firing rates (2.3 +/- 1.2 Hz, 2.1 +/- 1.2 Hz, 1.9 +/- 0.9 Hz, 1.7 +/- 1.1 Hz, n = 7, p < 0.05) and incidences of delayed afterdepolarizations (DADs). KB-R7943 (3, 30 microM) decreased transient inward currents, Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content. Ouabain (0, 0.1, 1 microM) concentration-dependently increased the PV firing rates and DADs in PVs with spontaneous activity (n = 7) and induced nonsustained spontaneous activity (1 microM) in the PVs without spontaneous activity (n = 14). However, in the presence of KB-R7943 (30 microM), ouabain (1 microM) did not increase the PV firing rates or induce spontaneous activity in the PVs without spontaneous activity (n = 7). CONCLUSIONS: KB-R7943 reduces the PV arrhythmogenic activity and prevents the ouabain-induced arrhythmogenicity. Our findings support the role of the NCX current in the PV electrical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号