首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibins are secreted alpha:beta heterodimers of the TGF-beta superfamily that are mainly synthesized in Sertoli cells and granulosa cells, and are critical regulators of testicular and ovarian development and function. Mice homozygous for a targeted deletion of the inhibin alpha subunit gene (Inha(-/-)) develop sex cord-stromal tumors in a gonadotropin-dependent manner. Here, we determine the contribution of LH to gonadal tumorigenesis by generating mice deficient in both inhibins and LH. Inha(-/-)Lhb(-/-) mice have increased survival and delayed tumor progression, and these observations correlate with lower serum FSH and estradiol levels compared to Inha(-/-) controls. Double mutant testicular tumors demonstrate decreased expression of cyclin D2, while double mutant ovarian tumors have elevated expression of p15(INK4b) and trend toward higher levels of p27(Kip1). We conclude that LH is not required for tumor formation in the absence of inhibins but promotes tumor progression, likely through alterations in serum hormone levels and cell cycle regulators.  相似文献   

2.
Complementary DNAs encoding precursor molecules of the beta subunits of three pituitary glycoprotein hormones (LH, FSH, and TSH) of the Japanese toad (Bufo japonicus) were isolated and sequenced. Unexpectedly large numbers of single nucleotide substitutions were found in all three beta subunit cDNAs. The eight isolated LH beta precursor cDNA clones were classified into six forms of nucleotide sequence, with four nucleotide substitutions each in the apoprotein coding region and in the 3' untranslated region (UTR). In the deduced amino acid sequence, the LH beta subunit showed two forms with a single amino acid substitution. The seven isolated FSH beta subunit cDNAs were classified into two forms, which differed from each other at 11 positions in the 3' UTR. The six isolated TSH beta subunit clones were classified into four forms with 2 and 5 nucleotide substitutions in the signal peptide and apoprotein coding regions, respectively. However, all the substitutions in the apoprotein coding region were silent. The substitution in the signal peptide coding region could produce three forms of signal peptide. Amino acid sequence comparison revealed that the toad LH beta subunit is more similar to the fish GTH II beta subunit than to mammalian and avian LH beta subunits. We found that the toad LH beta subunit molecule is a partial chimera of LH and FSH; amino acid residues located in 36th to 42nd and 96th to 99th are identical or similar to those of not LH- but FSH-beta subunit in mammalian, whereas it is more similar to LH- than FSH-beta subunit in total. We also found that the toad FSH beta subunit is more similar to the fish GTH II beta subunit than to the fish GTH I beta subunit and that the toad TSH beta subunit is more similar to tetrapod TSH beta subunits than to fish TSH beta subunits.  相似文献   

3.
McMullen ML  Cho BN  Yates CJ  Mayo KE 《Endocrinology》2001,142(11):5005-5014
Inhibin and activin are structurally related dimeric peptide hormones and are members of the TGF-beta superfamily of proteins. In the accompanying paper, we describe transgenic mice that overexpress the inhibin alpha-subunit gene from a metallothionein-I promoter (MT-alpha) and examine the effects of the MT-alpha transgene on gonadotropin levels and fertility. To characterize the effects of increased inhibin alpha-subunit on gonadal morphology and function, in this report we investigate gonadal histology, steroid hormone levels, and the basis of ovarian cyst formation in MT-alpha transgenic mice. MT-alpha transgenic female mice develop large fluid-filled ovarian cysts of follicular origin as early as 3 months of age. By 12 months of age, more than 92% of female MT-alpha transgenic mice develop ovarian cysts compared with less than 25% of wild-type littermates. Ovarian cysts form unilaterally or bilaterally, and cystic ovaries often have a greatly expanded bursal sac. Additionally, the ovaries of MT-alpha transgenic mice contain polyovular follicles and have fewer mature antral follicles and corpora lutea. MT-alpha female mice exhibit abnormal steroid hormone production, with increased serum T levels and reductions in serum E with corresponding reductions in uterine mass. In the MT-alpha transgenic males, testis size was decreased by 20-40% compared with control males, and there is a corresponding reduction in seminiferous tubule volume. After a chronic treatment with a GnRH antagonist, MT-alpha female mice continued to develop ovarian cysts and bursal sac expansions, although the cysts were markedly reduced in size. These results indicate that the expression of the rat inhibin alpha-subunit in mice results in significant ovarian pathology, reduced testicular size, and altered ovarian steroidogenesis. The antagonist studies are consistent with a direct ovarian effect of the alpha-subunit transgene product mediated by changes in the inhibin-to-activin ratio in these mice.  相似文献   

4.
We have produced transgenic (TG) mice expressing under the ubiquitin C promoter either the glycoprotein hormone common alpha-subunit (C(alpha)) or human chorionic gonadotropin (hCG) beta-subunit. C(alpha) overexpression alone had no phenotypic effect, but the hCG(beta) expressing females, presenting with moderately elevated levels of bioactive LH/hCG, due to dimerization of the TG hCG(beta) with endogenous C(alpha), developed multiple gonadal and extragonadal neoplasias. Crosses of the C(alpha) and hCG(beta) mice (hCG(alpha)beta) had >1000-fold elevated hCG levels, due to ubiquitous transgene expression, and presented with more aggressive tumour formation. The ovaries displayed initially strong luteinisation of all somatic cell types, leading to formation of luteomas, and subsequently to germ cell tumours (teratomas). The pituitary glands of TG females were massively enlarged, up to >100 mg, developing macroprolactinomas with very high prolactin (PRL) production. This endocrine response probably induced breast cancers in the mice. In contrast to the females, similar high levels of hCG in male mice had only marginal effects in adulthood, with slight Leydig cell hyperplasia and atrophy in the seminiferous epithelium. However, clear Leydig cell adenomas were observed in postnatal mice, apparently originating from fetal Leydig cells. In conclusion, these studies demonstrate marked tumorigenic effects of supraphysiological hCG levels in female mice, but clear resistance to similar changes in males. The extragonadal tumours were induced by hCG stimulated aberrant ovarian endocrine function, rather than by direct hCG action, because gonadectomy prevented all extragonadal phenotypes despite persistent hCG elevation. The phenotypes of the TG mice apparently represent exaggerated responses to hCG/LH and/or gonadal steroids. It remains to be explored to what extent they simulate respective responses in humans to pathophysiological elevation of the same hormones.  相似文献   

5.
Rising serum FSH levels is one of the earliest signs of human female reproductive aging. Whether or not elevated FSH remains a passive reflection of a diminishing ovarian follicle pool or actively contributes to declining female fertility with age has not been established. We therefore investigated female reproduction in mice expressing progressively rising serum levels of transgenic human FSH (Tg-FSH, 2.5-10 IU/liter) independently of follicle depletion. We show that serum LH and estradiol levels and uterine size remained normal in Tg-FSH females, whereas ovarian weight and corpora lutea number were significantly increased up to 1.3- and 5-fold, respectively. Furthermore, the monotrophic FSH rise produced a striking biphasic effect on female fertility. Tg-FSH females less than 22 wk old delivered increased litter sizes, then beyond 23 wk, litter sizes decreased rapidly culminating in premature infertility despite continued ovary follicle development, and increased ovulation and uterine embryo implantation sites as well as normal serum levels of anti-Mullerian hormone, a marker of ovarian follicle reserve. We found that rising circulating Tg-FSH produced premature infertility by increasing embryo-fetal resorption and parturition failure with age. Thus, our Tg-FSH mice present a novel paradigm to investigate selective contributions of elevated FSH to age-related female infertility, which revealed that rising FSH levels, despite no exhaustion of ovarian reserve, actively accelerates female reproductive aging primarily by postimplantation reduction of embryo-fetal survival.  相似文献   

6.
Follitropin (FSH) is a pituitary glycoprotein hormone that is essential for the development of ovarian follicles and testicular seminiferous tubules. FSH is used clinically to stimulate follicular maturation for in vitro fertilization and treatment of anovulatory women. One issue regarding the clinical use of FSH is its short half-life in the circulation. To address this point, we constructed chimeric genes containing the sequence encoding the C-terminal peptide of the chorionic gonadotropin beta subunit (CG beta) fused to the translated sequence of the human FSH beta subunit (FSH beta). This region of CG beta is important for maintaining the prolonged plasma half-life of human CG dimer. The presence of the C-terminal peptide sequence did not significantly affect assembly of FSH beta with the alpha subunit or secretion of the dimer. In vitro receptor binding and steroidogenic activity of dimer bearing the FSH beta-C-terminal peptide chimera were the same as wild-type FSH. However, both the in vivo potency and half-life in circulation of the dimer bearing either one or two C-terminal peptide units were enhanced. Dimers containing FSH beta-CG beta chimeras could serve as potent FSH agonists for clinical use, and the present strategy may have wide applications for enhancing the in vivo half-life of diverse proteins.  相似文献   

7.
We previously developed a transgenic (TG) mouse model that overexpresses the human chorionic gonadotropin (hCG) beta-subunit under the universal human ubiquitin C promoter, displaying in males a modest 3-fold increase in circulating levels of LH/hCG bioactivity. The males were fertile and presented with a mild reproductive phenotype. To achieve higher levels of hCG, a double TG model was generated by cross-breeding the hCG beta-expressing mice with another TG line harboring a ubiquitin C/common alpha-subunit fusion gene. The double-TG mice expressed excessive levels of dimeric hCG, with 2000-fold elevated circulating LH/hCG bioactivity. These male mice were infertile, primarily due to inability to copulate, and they showed enhanced testicular androgen production despite clear down-regulation of LH/hCG receptors. Their intratesticular inhibin B was unaltered, but serum FSH was markedly reduced. Apparently the chronic hCG hyperstimulation led to focal Leydig cell proliferation/hypertrophy at 6 months of age, but failed to promote testicular tumors. Even though full spermatogenesis occurred in most of the seminiferous tubules, progressive tubule degeneration was apparent as the males grew older. The prostate and seminal vesicles were enlarged by distension of glandular lumina. Functional urethral obstruction was indicated by distension and sperm accumulation in distal vas deferens as well as by dilated urinary bladder and enlarged kidneys. The abnormal function of accessory sex glands and/or lower urinary tract as a consequence of the disturbed sex hormone balance or direct action of hCG may be the main cause of infertility in this model. The present study provides in vivo evidence that exposure of male mice to chronically elevated levels of hCG severely affects their urogenital tract function at multiple sites and causes infertility, but, unlike in LH/hCG overexpressing female mice, it is not tumorigenic.  相似文献   

8.
9.
Moore JP  Yang RQ  Winters SJ 《Endocrinology》2012,153(3):1421-1434
The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) is present in high concentrations within the hypothalamus, suggesting that it may be a hypophysiotropic factor, whereas pituitary expression suggests a paracrine function. PACAP stimulates gonadotropin secretion and enhances GnRH responsiveness. PACAP increases gonadotropin α-subunit (αGSU), lengthens LHβ, but reduces FSHβ mRNA levels in adult pituitary cell cultures in part by increasing follistatin. PACAP stimulates LH secretion in rats; however, acceptance of PACAP as a regulator of reproduction has been limited by a paucity of in vivo studies. We created a transgenic mouse model of pituitary PACAP overexpression using the αGSU subunit promoter. Real-time PCR was used to evaluate PACAP, follistatin, GnRH receptor, and the gonadotropin subunit mRNA in male transgenic and wild-type mice of various ages. Transgenic mice had greater than 1000-fold higher levels of pituitary PACAP mRNA; and immunocytochemistry, Western blot, and ELISA analyses confirmed high peptide levels. FSH, LH, and testosterone levels were significantly suppressed, and the timing of puberty was substantially delayed in PACAP transgenic mice in which gonadotropin subunit and GnRH receptor mRNA levels were reduced and pituitary follistatin expression was increased. Microarray analyses revealed 1229 of 45102 probes were significantly (P < 0.01) different in pituitaries from PACAP transgenic mice, of which 83 genes were at least 2-fold different. Genes involved in small molecule biochemistry, cancer, and reproductive system diseases were the top associated networks. The GnRH signaling pathway was the top canonical pathway affected by pituitary PACAP excess. These experiments provide the first evidence that PACAP affects gonadotropin expression and sexual maturation in vivo.  相似文献   

10.
Effects of recombinant human inhibin (rh inhibin) and testosterone on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion and mRNA levels of gonadotropin subunits were investigated in superfused male rat pituitary cell cultures. During superfusion, the cells were stimulated with gonadotropin-releasing hormone (GnRH) pulses (10 nM, 6 min/h) and exposed to rh inhibin (2 ng/ml) and/or testosterone (10 nM) for up to 20 h. The concentrations of FSH and LH were measured in effluent media by radioimmunoassay (RIA), and subunit mRNAs were determined by Northern blot hybridizations using rat FSH beta, LH beta and alpha genomic and cDNA probes. Rh inhibin suppressed the secretion of FSH (30-40% of control) and the secretion of LH to 50-60% of control, but inhibited only FSH beta mRNA (to non-detectable levels). Testosterone alone suppressed the release of LH to 50% of control, whereas FSH release was increased to 130-160% (P less than 0.05) of control. This increase was due to higher interpulse values without significant changes in the pulse amplitude. Also FSH beta mRNA level was increased (1.5-fold, P less than 0.05) but only after 17-20 h of treatment. On the other hand, testosterone had no effect on LH beta and alpha subunit mRNA levels. Testosterone in combination with rh inhibin showed an inhibitory effect on LH beta mRNA; however, the pattern of LH release was not significantly different from that observed with rh inhibin or testosterone alone. Combined effects of testosterone and rh inhibin on FSH secretion and FSH beta mRNA were similar to those observed with rh inhibin alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The use of fertility drugs has continued to grow since their introduction in the 1960s. Accompanying this increase has been the speculation that repetitive use of these drugs can cause ovarian tumors or cancer. We recently reported that transgenic mice with chronically elevated luteinizing hormone (LH), an analog of which is commonly used in fertility regimens, develop granulosa cell (GC) tumors. In this report we show that LH induction of these tumors is highly dependent on genetic background. In CF-1 mice, chronically elevated LH invariably causes GC tumors by 5 months of age. However, in hybrid mice generated by crossing CF-1 males with C57BL/6, SJL, or CD-1 females, elevated levels of this same hormone cause a completely different phenotype resembling a luteoma of pregnancy. We also show that three genes likely control these alternative hormonal responses. This clinical correlate of elevated LH reveals remarkably distinct, strain-dependent, ovarian phenotypes. In addition, these results support the rare incidence of GC tumors in the human population, and suggest that the ability of certain fertility drugs to cause ovarian tumors may depend on an individual's genetic predisposition.  相似文献   

12.
Hypogonadal (hpg) mutant mice, with a congenital deficiency of hypothalamic gonadotrophin-releasing hormone (GnRH), and testicular feminized (tfm) mice, which lack a functional androgen receptor, were used to study the effects of the potent GnRH agonist 'Zoladex' (ICI 118630; D-Ser (Bu(t))6, Azgly10-GnRH) on pituitary and gonadal function. Zoladex (0.5 mg) in a sustained-release lactide-glycolide copolymer depot was administered subcutaneously under anaesthesia and was left in place for 7 days, after which time the effects of the drug upon pituitary and serum gonadotrophin concentrations, glycoprotein hormone subunit mRNAs and testicular morphology were investigated. At the pituitary level, Zoladex treatment resulted in a substantial reduction in LH content in normal males, and LH content was depressed in hpg mice even below the basal levels normally found in these mutants. Pituitary LH content in the Zoladex-treated animals was depressed in the tfm groups, but not to the same levels as those found in the normal and castrated normal mice. Zoladex treatment at the time of castration prevented the post-operative elevation in serum LH associated with castration alone. In the androgen-deficient tfm mouse, Zoladex did not depress the normally elevated serum LH levels. Serum LH in the hpg animals was, in all cases, below the limit of detection of the assay. Pituitary FSH content was depressed into the hpg range in both the normal and castrated animals, but there was no further depression in the hpg mice. The pituitary content was reduced in the tfm mice, again the effects not being as dramatic as in the normal and castrated animals. Serum FSH content, as measured by radioimmunoassay, was depressed by 50% in normal mice; there was no reduction in the hpg mice, however. With regard to pituitary gonadotrophic hormone gene expression, Zoladex administration to normal mice caused a dramatic reduction in LH beta mRNA content, to a level approximating that found in untreated hpg mice. The drug also depressed LH beta mRNA in the castrated group to the hpg range when given at the time of castration, whereas in untreated castrated mice there was a significant increase in LH beta mRNA. In the tfm mouse, which can be considered as a model for long-term failure of androgen feedback, Zoladex again induced a fall in LH beta mRNA, but not to the same extent as in the normal and normal castrated group. Zoladex had no effect on the already low levels of LH beta mRNA found in hpg mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Female infertility is a worldwide problem affecting 10-15% of the population. The cause of the infertility in many cases is not known. In the present report, we demonstrate that alterations in two transmembrane structural proteins, IA-2 and IA-2beta, located in dense core secretory vesicles (DCV) of many endocrine and neuroendocrine cells, can result in female infertility. IA-2 and IA-2beta are best known as major autoantigens in type 1 diabetes, but their normal function has remained an enigma. Recently we showed in mice that deletion of IA-2 and/or IA-2beta results in impaired insulin secretion and glucose intolerance. We now report that double knockout (DKO), but not single knockout, female mice are essentially infertile. Vaginal smears showed a totally abnormal estrous cycle, and examination of the ovaries revealed normal-appearing oocytes but the absence of corpora lutea. The LH surge that is required for ovulation occurred in wild-type mice but not in DKO mice. Additional studies showed that the LH level in the pituitary of DKO female mice was decreased compared with wild-type mice. Treatment of DKO females with gonadotropins restored corpora lutea formation. In contrast to DKO female mice, DKO male mice were fertile and LH levels in the serum and pituitary were within the normal range. From these studies we conclude that the DCV proteins, IA-2 and IA-2beta, play an important role in LH secretion and that alterations in structural proteins of DCV can result in female infertility.  相似文献   

14.
Pituitary GnRH receptor (GnRH-R) levels and LH secretion are suppressed in the lactating rat. To determine if LH synthesis is also inhibited, we have measured LH subunit mRNA levels in the pituitary of lactating rats. We have also examined the temporal relationship among restoration of GnRH-R, LH secretion, and LH synthesis after withdrawing the sensory stimulus of suckling. Pituitary alpha-subunit and LH beta mRNA levels were sharply reduced on day 10 of lactation in both intact and ovariectomized (OVX) animals compared with those in cycling diestrous rats or OVX controls. Removal of the suckling stimulus from OVX animals led to significant increases in alpha-subunit and LH beta mRNA levels by 24 h. Upon removal of the suckling stimulus from intact rats, alpha-subunit mRNA levels were restored by 48 h, but LH beta mRNA levels did not return to diestrous levels until 72 h. Pituitary GnRH-R levels were clearly up-regulated within 1 day after pup removal. Some LH pulses were observed by 48 h, but consistent plasma LH pulses were not detected until 72 h. When pulsatile GnRH was administered during the 24 h after pup removal from intact rats, the regimen of pulsatile GnRH was successful in inducing LH secretion; however, the restoration of pulsatile LH was not accompanied by increases in alpha-subunit and LH beta mRNA levels. The present studies provide further evidence to support the hypothesis that during lactation, the suppression of pituitary gonadotroph function is mainly due to the loss of hypothalamic GnRH secretion. Our data also show that 1) the restoration of GnRH-R alone is not sufficient to activate LH subunit mRNA and LH secretion; 2) the normal restoration of pulsatile LH secretion and increases in LH subunit mRNA are temporally correlated, as increases in LH secretion appear to precede increases in LH subunit mRNA; and 3) the restoration of pituitary LH subunit mRNA levels and pulsatile LH secretion took longer in the intact rat than in the OVX rat, suggesting that ovarian steroids may play a role in the inhibitory effect of lactation.  相似文献   

15.
Gonadotropin-releasing hormone (GnRH) and gonadal steroids regulate synthesis and release of luteinizing hormone (LH). GnRH is secreted intermittently by the hypothalamus, producing pulsatile LH release, and a pulsatile GnRH stimulus is required to maintain LH secretion. We report the regulatory effects of GnRH pulse injections on pituitary concentrations of LH alpha and beta subunit mRNAs in a castrated/testosterone-replaced male rat model. Replacement with physiologic amounts of testosterone decreased concentrations of both LH subunit mRNAs. GnRH pulse injections (10-250 ng per pulse given every 30 min for 48 hr) increased both mRNA concentrations, but the dose response patterns were markedly different. alpha subunit mRNA was increased by all GnRH doses but not the levels seen after castration alone. In contrast, LH beta subunit mRNA concentrations showed a marked dependence on GnRH dose. Maximal responses, to values similar to those in castrates, occurred after 25-ng GnRH pulses, and larger doses produced a smaller increase in LH beta subunit mRNA. Both the acute LH secretory response to GnRH and the number of GnRH receptors followed a pattern similar to the LH beta subunit mRNA concentration and were maximal after the 25-ng GnRH dose. These results show that GnRH can differentially regulate LH subunit mRNAs and suggest that concentrations of LH beta subunit mRNA may be a limiting factor in GnRH-stimulated LH release.  相似文献   

16.
17.
Genetic targeting of the cAMP-specific phosphodiesterase 4D1 (PDE4D1) to gonadotropin-releasing hormone (GnRH) neurons in the GPR-4 transgenic rat resulted in decreased luteinizing hormone (LH) pulse frequency in castrated female and male rats. A similar decrease in the intrinsic GnRH pulse frequency was observed in GT1 GnRH cells expressing the PDE4D1 phosphodiesterase. We have extended these findings in ovariectomized (OVX) GPR-4 rats by asking what effect transgene expression had on pulsatile LH and follicle-stimulating hormone (FSH) secretion, plasma and pituitary levels of LH and FSH, and levels of the alpha-glycoprotein hormone subunit (alpha-GSU), LH-beta and FSH-beta subunit mRNAs. In OVX GPR-4 rats the LH pulse frequency but not pulse amplitude was decreased by 50% compared to wild-type littermate controls. Assaying the same samples for FSH, the FSH pulse frequency and amplitude were unchanged. The plasma and anterior pituitary levels of LH in the GPR-4 rats were significantly decreased by approximately 45%, while the plasma but not anterior pituitary level of FSH was significantly decreased by 25%. As measured by real-time RT-PCR, the mRNA levels for the alpha-GSU in the GPR-4 rats were significantly decreased by 41%, the LH-beta subunit by 38% and the FSH-beta subunit by 28%. We conclude that in the castrated female GPR-4 rats the decreased GnRH pulse frequency results in decreased levels of LH and FSH and in the alpha- and beta-subunit mRNA levels.  相似文献   

18.
In this investigation, the neuroendocrine alterations induced by high, chronic circulating levels of endogenous growth hormone (GH) were studied in transgenic mice with ectopic overexpression of the human growth hormone-releasing hormone (h-GH-RH) gene. In comparison with their normal littermates, transgenic h-GH-RH mice had elevated plasma levels of GH, prolactin (PRL), and corticosterone. In addition, they had elevated body, liver, kidney, spleen, and pituitary weights compared with normal mice. Testis and seminal vesicle weights were also increased in transgenic mice. Although basal plasma luteinizing hormone (LH) levels, plasma estradiol levels in females, and plasma testosterone levels in males did not differ significantly between normal and transgenic animals, the LH response to castration was severely impaired in transgenic mice of both sexes. Among the biogenic amines studied in the hypothalamus, only dopamine concentrations were significantly lower in transgenic animals compared with their normal littermates. This decrease in hypothalamic dopamine may be related to the hyperprolactinemia in transgenic animals. In vitro, pituitaries from transgenic mice released significantly higher amounts of GH, and although the basal release of LH was not different in both normal and transgenic mice, the response to gonadotropin-releasing hormone was significantly smaller in transgenic mice. Cultured anterior pituitary cells from transgenic mice secreted high quantities of GH and PRL in vitro, but these quantities significantly decreased from 1 to 8 wk in culture. These results show that high, persistent levels of circulating endogenous GH induce alterations in neuroendocrine functions related to the hypothalamopituitary-gonadal and the hypothalamo-pituitary-adrenal axes.  相似文献   

19.
We have produced over the years several genetically modified mouse models (transgenic [TG], knockout [KO] and knockin [KI]) for the study of normal and aberrant functions of gonadotrophins and their receptors. We summarise in the present review some of our recent findings on these animal models. One is the cascade of extragonadal phenotypes triggered by ovarian hyperstimulation in TG mice overexpressing the human choriongonadotrophin (hCG) β-subunit and presenting with elevated levels of serum luteinising hormone (LH)/hCG bioactivity. Massively elevated levels of serum progesterone, rather than oestrogens, are responsible for the induction of pituitary prolactinomas and the subsequently elevated prolactin (PRL) levels. Along with normal oestradiol and elevated progesterone levels, the increased concentration of PRL induces lobuloalveolar development of the mammary gland, with ultimate formation of oestrogen and progesterone receptor-negative malignant tumours. Another TG mouse model expressing a constitutively activating mutant form of the follicle-stimulating hormone receptor (FSHR) presents with a strong ovarian phenotype inducing advanced follicular development and depletion, haemorrhagic follicles, teratomas and infertility. A third TG mouse model, coexpressing binding- and signalling-deficient mutants of LHCGR in the KO background for the same receptor (R) gene provided convincing evidence that functional complementation through homo-di/oligomerisation is a physiologically relevant mode of activation of class A G protein-coupled receptors (GPCR). Taken together, genetically modified mouse models provide powerful tools for the elucidation of normal and pathological functions of gonadotrophins and their R.  相似文献   

20.
Y Katz  D T Armstrong 《Endocrinology》1976,99(6):1442-1447
Serum estradiol-17beta levels, elevated prior to the luteinizing hormone (LH) surge, decline abruptly following the release of endogenous LH or the injection of exogenous LH. To investigate the mechanism of this decline, bovine LH (NIH-LH-B8) was administered to immature rats, in which follicular maturation and estrogen biosynthesis were induced by a non-ovulating dose of pregnant mare serum gonadotropin (PMS). Serum and ovarian estradiol-17beta concentrations fell detectably by 4h, and reached levels around 20% of the controls by 8h after iv injection of 10 mug LH. Concomitant decreases occurred in ovarian androgen concentrations, following an initial rise, and in the in vitro ovarian testosterone aromatizing enzyme activity. The LH-induced inhibition of the aromatase activity was found to be of a non-competitive type. It is proposed that two enzyme systems are inhibited as a result of the LH treatment: the C17,20-lyase and the C19 androgen aromatase, thereby leading to decreased concentrations of estrogens in the ovaries and blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号