首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Ganglioside composition was examined in an experimental mouse brain tumor growing as a solid tumor in vivo and as a cultured cell line in vitro. Gangliosides were also studied in the solid tmor rederived from the cultured tumor cell line. Although GM3-NeuAc was the major ganglioside in both the solid tumor and cultured tumor cells, several gangliosides expressed in the solid tumors (e.g., GM2-NeuGc, GM1, and GM1b) were not expressed in the cultured tumor cells. These gangliosides, however, are major components of mouse macrophages. Furthermore, significant amounts of gangliosides containingN-glycolylneuraminic acid (NeuGc) were found in the solid tumor growing in vivo, but only trace amounts were present in the cultured tumor cells. NeuGc is a common ganglioside sialic acid in mouse nonneural cells, whereasN-acetylneuraminic (NeuAc) is the predominant sialic acid in mouse brain. The trace amounts of NeuGc in the cultured cells are attributed to contamination from the fetal bovine serum. Radiolabeling of the cultured tumor cell gangliosides with [14C]galactose revealed that GM3-NeuAc was the only ganglioside synthesized by the tumor cells. The results suggest that nontumorinfiltrating cells, e.g., macrophages, lymphocytes, and endothelial cells, may contribute significantly to the total ganglioside composition of solid tumors growing in vivo.  相似文献   

2.
3.
Repeated high doses of morphine sulfate, administered in a 24–36 h period, stimulates the expression of oral stereotypy in rats. Sensitization to this effect of morphine is demonstrated by the reexpression of the stereotypy by the administration of 4.0 mg/kg of morphine one week following the original exposure. To investigate the role ofN-methyl-d-aspartic acid (NMDA) and D1 dopamine (DA) receptors in the acute expression and sensitization of morphine-induced oral stereotypy, rats were administered four injections of morphine (10.0 mg/kg) one injection every 12 h and observed for the expression of stereotyic behaviors following pretreatment with selective antagonists. Pretreatment with the NMDA antagonist, MK-801 (0.7 mg/kg), before each of the four morphine injections antagonized both the initial expression of oral stereotypy and the development of sensitization. In contrast, the DA D1 receptor antagonist SCH23390 (40.0 μg/kg) administered during the four high-dose treatments with morphine antagonized the initial expression of oral stereotypy and not the development of sensitization. These findings implicate glutamate's action at the NMDA receptor in both the acute expression of morphine-induced oral stereotypy, and the development of sensitization of this morphine effect, whereas DA D1 receptors may only be involved in the acute expression of the stereotypy.  相似文献   

4.
We studied the influence of halothane and isoflurane on the electrical threshold for triggering spreading depression (SD) in rats. While the N-methyl-D-aspartate (NMDA) antagonist ketamine dramatically increased the triggering threshold (and blocked propagation), neither volatile agent had any dose-related effect. High doses of both agents slightly slowed SD propagation rate. These results indicate that volatile agents in typical anesthetic doses can be used in studies of SD in rats, and also suggest that these agents have little effect on NMDA receptor-mediated neurotransmission.  相似文献   

5.
Park SW  Kim YB  Hwang SN  Choi DY  Kwon JT  Min BK  Suk JS 《Brain research》2000,855(2):142-306
If the activity of pro-apoptotic genes can be down-regulated by certain chemicals, cells may be protected from apoptosis. To test this hypothesis in a cerebral infarction model, we used N-methyl-N-nitrosourea (MNU) and azoxymethane (AOM), which were approved gene-modulating chemicals. A focal cerebral infarction was created by coagulation of the right middle cerebral artery and ipsilateral common carotid artery (CCA) and simultaneous transient occlusion of the contralateral CCA for 30 min in 25 adult Sprague-Dawley rats that were sacrificed 24 h later. In one group (n=7), MNU (5 mg/kg) was injected intravenously 30 min before initiation of ischemia. In another group (n=7), AOM (15 mg/kg) was administered intraperitoneally before 24 h of ischemia. The infarction volumes were checked and the brains were stained for p53 and p21 proteins. The width in micrometers of the peri-infarct area containing p53 or p21 protein-positive cells, and the number of p53 or p21 protein-positive cells (cells/HPF) were measured at an adjacent peri-infarct area. The AOM-treated group showed a significantly reduced infarction volume (by 42.5%, p<0.001), a significantly greater number of p53 positive cells (by 12.0%, p<0. 05), and a significantly wider p53 protein-positive area (by 15.6%, p<0.01) than the untreated group. AOM did not show any influence on the expression pattern of the p21 protein. MNU had no effect in the expression of p53 or p21 proteins. As a result, we concluded that AOM revealed a protective effect in ischemia by suppressing the pro-apoptotic activity of the p53 gene. Safer chemicals that can modulate apoptotic genes, if any, will provide a new therapeutic modality for cerebral infarction.  相似文献   

6.
Dorsomedial (DMH) and paraventricular nuclei (PVN) are two important hypothalamic structures involved in the central regulation of cardiovascular regulation. L-Glutamic acid and gamma-aminobutyric acid (GABA) were demonstrated to elicit cardiovascular responses when administered via intracerebroventricular injection or parenchymal microinjections into the hypothalamic nuclei, participating in central cardiovascular regulation. In this study the interaction between the DMH and the PVN were investigated by means of microinjection and microdialysis techniques in Sprague-Dawley rats. Stereotaxic surgery was performed for the insertion of intracerebral parenchymal microinjection cannula into the right DMH and microdialysis probe into the left PVN. After a recovery period of 3 days, the iliac artery was cannulated for monitoring pulsatile blood pressure and heart rate by means of pressure transducer connected to a polygraph. Microinjection of 50 pmol NMDA into the DMH was performed and microdialysis perfusates were collected simultaneously from the PVN in the conscious rat model. L-Glutamic acid and GABA levels were analyzed by an isocratic HPLC method with the aid of a fluorescent detector. Microinjection of 50 pmol NMDA into the DMH produced significant increases in mean arterial pressure and heart rate. NMDA microinjection into the DMH produced a significant increase in L-glutamic acid release in the PVN, but no significant change in GABA release was observed. These results may indicate that stimulation of the DMH by NMDA results in subsequent stimulation of the PVN.  相似文献   

7.
H. Barbeau  S. Rossignol   《Brain research》1990,514(1):55-67
The effects of serotonergic substances on the locomotor pattern and cutaneous reflexes were studied in 3 adult chronic spinal cats trained for 1-3 months to walk with their hindlimbs on a treadmill. The 5-hydroxytryptamine (5-HT) precursor, 5-hydroxytryptophan (5-HTP), and two 5-HT agonists, 5-methoxy-N,N-dimethyltryptamine and quipazine, were found to generally increase the step length and augment the amplitude of hindlimb extensors and flexors as well as axial muscles. Correspondingly, the excursion of the hip, the knee and the ankle joints was increased, mainly in the flexion direction. Cyproheptadine, a 5-HT antagonist, partially or completely antagonised these effects. The threshold current needed to elicit a flexion reflex by stimulating the dorsum of the paw through implanted wires, was lower after the injection of 5-HT agonists than in the immediately preceding control period. Fast paw shaking initiated by dipping the paw in water was unchanged after quipazine and was not abolished by cyproheptadine. In accordance with others, our results suggest that serotonergic drugs may increase the excitability of several types of spinal neurones, including motoneurones, and consequently influence the locomotor pattern as well as the reflex responsiveness. The changes observed with serotonergic agonists were different in many respects from those obtained with noradrenergic agonists and these differences are discussed. This may indicate specific roles for these classes of substances on locomotor function and reflex activity and also provide a basis for further clinical investigations.  相似文献   

8.
The action of immune-system-derived cytokines to stimulate the release of corticotropin-releasing factor (CRF) from the hypothalamus and the consequent elaboration of ACTH and release of corticosteroids has provided an especially useful model to investigate the nature of the intercommunication of neuroendocrine and immunological pathways. Substantial evidence exists to support the production of cytokines, such as interleukin-1 (IL-1) α and β, within the mammalian central nervous system. The mechanisms and neuronal circuitries involved in the effects of these cytokines of peripheral and central origin on the activity of neuroendocrine CRF motoneurons and the hypothalamic-pituitary-adrenal axis are described. Also included is a discussion of the influence of IL-1 on transduction signals controlling the release and the biosynthesis of CRF in the parvocellular division of the paraventricular nucleus of the hypothalamus and the relationship between these two distinct intracellular processes. The relebance of using immediate early genes as indices of neuronal activity in immune-challenged rats and the possible roles of c-fos and NGFI-B within neuroendocrine CRF motoneurons are outlined. Finally, the effects of acute immune response on neuroendocrine functions and brain neuronal activation are presented.  相似文献   

9.
In the adult mammalian cochlea, the ability of nerve fibres to regenerate has been observed following disruption of the organ of Corti by various means, or transsection of the cochlear nerve in the internal auditory meatus. Based upon the implication of glutamate as a neurotransmitter at synapses between sensory hair cells and terminal dendrites of the auditory nerve in the mammalian cochlea, we have developed, in a previous study, an in vivo model of neural regeneration and formation of synapses after the destruction of the afferent nerve endings by local application of the glutamate agonist α-amino-3-hydroxy-5-methyl-isoxazol-propionic acid (AMPA). In situ hybridization experiments performed during the re-innervation process revealed an overexpression of mRNA coding for NR1 subunit of N-methyl- -aspartate (NMDA) receptors in the spiral ganglion neurons, suggesting that these receptors are implicated in neural regenerative processes. The present study has been designed to study the functional implication of NMDA receptors in the regrowth and synaptic repair of auditory dendrites in the guinea pig cochlea, by blocking the NMDA receptors during the period of normal functional recovery. In a first set of experiments, we recorded compound action potential after acute perilymphatic perfusion of cumulative doses (0.03–10 mM) of 2-amino-5-phosphonovalerate ( -AP5), a NMDA antagonist, to determine the efficiency of the drug. In a second set of experiments, the auditory dendrites were destroyed by local application of the glutamate agonist AMPA. The blockage of NMDA by the antagonist -AP5 applied with an osmotic micropump delayed the functional recovery and the regrowth of auditory dendrites. The findings of our study support the hypothesis that, in addition to acting as a fast transmitter, glutamate has a neurotrophic role via the activation of NMDA receptors.  相似文献   

10.
The effects of reverse microdialysis of N-methyl- -aspartic acid (NMDA) into the lateral hypothalamus (LH) on feeding and other behaviors were examined. Consistent with similar studies utilizing central microinjections, NMDA reverse microdialysed into the rat LH rapidly elicited a strong concentration-dependent stimulation of feeding. The minimum perfusate concentration of NMDA needed to elicit feeding with reverse microdialysis was 660 μM, a concentration 1/50 of that needed with pressure injections. Further, eating responses could be consistently elicited in sequential tests separated by 2–4 h in the same subject, and the magnitude of the eating in the first and second tests was highly correlated (r=0.87). Behavioral analysis revealed that the main response to NMDA consisted of eating without the concomitant hyperactivity produced by central microinjections of this agonist. The other behaviors exhibited during NMDA administration were those that normally occur during spontaneous feeding in rats. Also, rats precisely compensated for the increased food intake elicited by NMDA by reducing spontaneous feeding during the subsequent nocturnal phase, so as to maintain normal daily intakes. In contrast, N-methyl- -aspartate (NMLA) reverse microdialysed in to the LH (660 μM) did not elicit feeding nor affect any other behaviors we examined. These data support a role for LH glutamate and NMDA receptors in the control of feeding.  相似文献   

11.
Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder that results from a deficiency of sulfamidase (N-sulfoglucosamine sulfohydrolase), with consequential accumulation of its substrate, partially degraded heparan sulfate. Conventional doses (e.g. 1 mg/kg) of intravenously delivered recombinant human sulfamidase (rhSGSH) do not improve neuropathology in MPS IIIA mice due to an inability to traverse the blood–brain barrier; however high-dose treatment or administration of enzyme that has been chemically modified to remove mannose-6-phosphate glycans has been shown to reduce neuropathology in related animal models. We have combined these approaches to evaluate the ability of 1, 5, 10 or 20 mg/kg of similarly chemically modified or unmodified rhSGSH to reduce neuropathology following repeated intravenous delivery to adult MPS IIIA mice. rhSGSH was detected in brain homogenates from mice treated with all doses of modified rhSGSH and those receiving the two higher doses of unmodified rhSGSH, albeit at significantly lower levels. Immunohistochemically, rhSGSH visualized in the brain was localized to the endothelium, meninges and choroid plexus, with no convincing punctate intra-neuronal staining seen. This presumably underlies the failure of the treatment to reduce the relative level of a heparan sulfate-derived oligosaccharide (GlcNS-UA), or secondarily stored substrates that accumulate in MPS IIIA brain cells. However, modification of rhSGSH significantly increased its effectiveness in degrading GlcNS-UA in non-CNS tissues, potentially as a result of its reduced plasma clearance. If this observation is generally applicable, chemical modification may permit the use of significantly lower doses of lysosomal enzymes in patients currently receiving intravenous enzyme replacement therapy.  相似文献   

12.
The pharmacotherapy of focal cortical ischaemia in the mouse   总被引:3,自引:0,他引:3  
The measurement of cortical omega 3 (peripheral-type benzodiazepine binding) site densities provides an accurate index for the detection and quantification of ischaemic brain lesions following middle cerebral artery occlusion (MCAO) in mice. Here, we have used this marker to assess the neuroprotective activity of potential anti-ischaemic drugs belonging to several chemical classes. In untreated mice, the mean infarcted volume measured 96 h after unilateral coagulation of the middle cerebral artery was 27.9 +/- 4.3 mm3 (17.5% of the hemisphere volume) and omega 3 site densities (measured by incubation with 3H-PK 11195) were increased by 107.3 +/- 4.8% (cortical homogenates) or by 81% (coronal brain sections). The administration of the anti-ischaemic agent SL 82.0715 (10 mg/kg i.p.), 5 min, 6 h and 18 h after the occlusion and then twice daily until sacrifice evoked a decrease of similar magnitude (ca. 60-70%) in the volume of the infarction and in the proliferation of omega 3 sites. The constant tissue sparing effect of SL 82.0715 allowed the examination of the window of therapeutic opportunity. A significant diminution of cortical omega 3 sites was still noted when the first administration was delayed until 3 h post-occlusion. Moreover, the protective effect of SL 82.0715 was enhanced by repeated treatment for the first 36 h but not thereafter. Based on the histological, autoradiographic and homogenate binding results obtained with SL 82.0715, we studied the protective effects of several competitive and non-competitive NMDA receptor antagonists. When administered according to the above-described standard protocol, these drugs reduced omega 3 site levels in cortical homogenates from MCAO mice in a dose-dependent manner. The dose preventing by 50% the increase in omega 3 site levels (in mg/kg i.p.) and the maximal inhibition were respectively: MK-801 (0.2, 93%); TCP (1.6, 66%); kynurenate (260, 58%); ifenprodil (7.0, 58%); SL 82.0715 (1.1, 72%); CGS 19755 (46% at 10 mg/kg); dextromethorphan (46% at 30 mg/kg). In contrast, agents acting preferentially upon sigma (sigma) opiate receptors ((+)-3PPP, 1-10 mg/kg i.p. and haloperidol, 0.3-3 mg/kg i.p.) did not provide a significant protection. In general, calcium channel blockers (nimodipine, flunarizine, verapamil, perhexiline, diltiazem) were devoid of a clear neuroprotective potential when administered at non-toxic doses after the coagulation of the middle cerebral artery. Diltiazem (3 and 10 mg/kg i.p.) provided a significant protection when the first administration was performed 10 min prior to the occlusion. Limited protection was observed with adenosine A1 receptor agonists (N6-cyclohexyladenosine and 2-chloro-adenosine).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Changes in inhibitory neuronal functioning may contribute to morbidity following traumatic brain injury (TBI). Evoked responses to orthodromic paired-pulse stimulation were examined in the hippocampus and dentate gyrus at 2 and 15 days following lateral fluid percussion TBI in adult rats. The relative strength of inhibition was estimated by measuring evoked paired pulses in three afferent systems: the CA3 commissural input to the CA1 region of the hippocampus; the entorhinal cortical input to the ipsilateral CA1 area (temporoammonic system); and the entorhinal input to the ipsilateral dentate gyrus (perforant path). In addition to quantitative electrophysiological estimates of inhibitory efficacy, levels of γ-aminobutyric acid (GABA) were qualitatively examined with immunohistochemical techniques. Effects of TBI on paired-pulse responses were pathway-specific, and dependent on time postinjury. At 2 days following TBI, inhibition of population spikes was significantly reduced in the CA3 commissural input to CA1, which contrasted with injury-induced increases in inhibition in the dentate gyrus seen at both 2 and 15 days postinjury. Low-level stimulation, subthreshold for population spikes, also revealed changes in paired-pulse facilitation of field extracellular postsynaptic potentials (fEPSPs), which depended on fiber pathway and time postinjury. Significant injury-induced electrophysiological changes were almost entirely confined to the hemisphere ipsilateral to injury. Intensity of GABA immunobinding exhibited a regional association with electrophysiological indices of inhibition, with the most pronounced increases in GABA levels and inhibition found in the dentate gyrus. TBI-induced effects showed a regional pattern within the hippocampus which corresponds closely to inhibitory changes reported to follow ischemia and kindling. This degree of similarity in outcome following dissimilar injuries may indicate common mechanisms in the nervous system response to injury.  相似文献   

14.
To investigate the course of trans-synaptic propagation of neural activity and plasticity in temporal lobe epilepsy, time-dependent changes in the level of synapsin I, a synaptic vesicle protein that is a marker of enhanced synaptic activity and synaptogenesis, were examined following kainate-induced epileptic status in rats. Compared with the control, the level of synapsin I protein increased in the bilateral stratum oriens of CA3 (28.8-40.2%) and CA1 (28.0-34.6%), and the stratum radiatum of CA1 (34.0%) ipsilateral to the injection site at 8 h after intra-amygdala administration of kainate. At 24 h, and 2 and 4 weeks after the kainate treatment, however, synapsin I levels returned to normal levels in most of the regions studied in spite of the extended neural loss in the hippocampus, which suggested the axonal sprouting on the remaining cells. The synapsin I mRNA levels time-dependently decreased bilaterally in CA1-CA3 and the hilus, while no significant changes were observed in the dentate gyrus. These results suggest that the synaptic input to CA3 and CA1 through the stratum oriens was enhanced in this model. A different mode of hippocampal neural activity and plasticity between kainate and kindling models of epilepsy may be stressed.  相似文献   

15.
In order to evaluate if the changes of the hypothalamic-pituitary-ovary axis that induce a decrease in fertility and modifications in the sexual cycles during senescence involve modifications in the regulatory action of excitatory amino acid neurotransmission on GnRH neurons, we measured the in vitro effects of NMDA on GnRH release by the anterior preoptic and medial basal hypothalamic areas (APOA-MBH) of castrated aging (18 months old) and young (90 days of age) rats. In a second series of experiments the in vivo LH release response to intrahypothalamic (push-pull) administration of NMDA to aged and young castrated female rats was also determined. A similar rate of basal GnRH release was observed in old and young rats during the incubation time. The addition of NMDA to the medium significantly increased GnRH release in both groups; nevertheless, the GnRH release response to NMDA was significantly lower in old ( P < 0.01) than in young rats (Young: Basal: 50 ± 10; NMDA 15′: 410 ± 63, 22,5′: 1,469 ± 300; Old; Basal: 47±10 NMDA 15′:210 ± 30; 22,5′: 350 ± 65 ng/GnRH/mg . protein). The LH levels measured throughout the in vivo experiments indicated that basal LH concentrations were significantly lower in the aged group. The mean LH concentrations (fractions 1 to 6) was significantly lower in the aged group (Young: 3.9 ± 0.07, Old: 2.4 ± 0.03 ng/ml, P < 0.01). The LH release response to NMDA measured 10 min after the intrahypothalamic administration of the glutamate agonist was significantly lower in aged rats (4 .2 ± 1.6 ng/ml) as compared to young animals (18.0 ± 6.1 ng/ml; P < 0.05). LH levels in young rats increased to 580% vs., and only 47% in aged rats as compared to previous basal values. In conclusion, present results demonstrate that the GnRH responses to NMDA neurotransmission, which has a predominantly excitatory effects on GnRH neurons, is significantly decreased in old rats, these data give further support to the hypothesis that a decrease in the excitatory inputs to GnRH neurons could be directly involved in the reduction of the hypothalamic-pituitary-ovary axis activity observed during aging.  相似文献   

16.
The effect of phencyclidine (PCP) on the γ-aminobutyric acid-ergic (GABAergic) transmission in the striatum of freely-moving rats was investigated using an in vivo microdialysis. The high potassium (100 mM) increased the extracellular GABA level to 4000% of the basal level. Although the basal GABA level in the striatal dialysate did not show either calcium dependency or tetrodotoxin (TTX) sensitivity, the high potassium evoked GABA level was reduced by 82% under calcium-free conditions (with 12.5 mM magnesium) and by 54% in the presence of 10 μM TTX. The systemic administration of PCP (7.5 mg/kg) or the local perfusion of PCP (100 μM and 1 mM) significantly inhibited the high potassium evoked GABA release in the rat striatum. The local perfusion of MK-801 (10 μM and 100 μM), a more potent and selective N-methyl- -aspartate (NMDA) receptor antagonist, also inhibited the high potassium evoked striatal GABA release. These drugs did not show any significant effect on the basal extracellular GABA level. NMDA (1 mM) either partly or completely blocked the effect of PCP (1 mM) or MK-801 (100 μM) on the high potassium evoked striatal GABA release. On the other hand, nomifensine (100 μM), a dopamine uptake blocker, did not show any effect on the high potassium evoked GABA release. These results suggest that PCP inhibited the striatal GABAergic neuronal transmission through its antagonism of the NMDA receptor.  相似文献   

17.
Previous studies from our laboratory have shown the ME7 model of murine scrapie to be accompanied by an atypical inflammatory response that is characterized by marked astroglial and microglial activation but also by the lack of significant expression of the pro-inflammatory cytokines interleukin (IL)-1beta and IL-6. The aim of this study was to determine whether, in the absence of IL-1beta and IL-6, tumour necrosis factor (TNF)-alpha may play an equivalent pro-inflammatory role, or if an anti-inflammatory cytokine profile dominates. We have used competitive polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) to determine the levels of TNF-alpha, IL-10 and transforming growth factor (TGF)-beta1 in the ME7 model, using their expression in lipopolysaccharide (LPS)-induced acute inflammation as a positive control. Levels of mRNA were elevated for all three cytokines during acute inflammation, while TGF-beta1 mRNA alone was significantly elevated in ME7-injected brains. Similarly, by ELISA, we detected elevated IL-10, TNF-alpha and TGF-beta1 in LPS-injected animals but only significant elevation of TGF-beta1 in ME7-injected animals. An increase in laminin and collagen IV deposition around blood vessels was also observed and is consistent with up-regulation by active TGF-beta1. These findings suggest that TGF-beta1 may play a central role in maintenance of an atypical microglial phenotype and may also be involved in vascular and extracellular matrix changes.  相似文献   

18.
Glutamate is the major excitatory neurotransmitter in the brain, and the excess of glutamate concentration in the synaptic cleft is a cause of neuronal injury or death. To find out a drug suppressing the excess of extracellular glutamate concentration, the effect of Saiko-ka-ryukotsu-borei-to, a herbal medicine, was examined in the control and zinc-deficient rats, a neurological disease model, by using in vivo microdialysis. The excessive increase in extracellular glutamate in the hippocampus was induced by perfusion with 100 mM KCl for 40 min. Administration of Saiko-ka-ryukotsu-borei-to did not appreciably influence the increase in body weight of the control rats and the retarded increase in body weight of zinc-deficient rats. However, administration of Saiko-ka-ryukotsu-borei-to to the control rats completely suppressed the increase in glutamate concentration in the hippocampal extracellular fluid during stimulation with high K+. The suppressive effect of Saiko-ka-ryukotsu-borei-to was also observed in zinc-deficient rats, in which extracellular glutamate concentration was markedly increased during stimulation with high K+. These results suggest that Saiko-ka-ryukotsu-borei-to is a useful drug for prevention or cure of excitotoxicity of glutamate.  相似文献   

19.
The possible existence of N-methyl-d-aspartate (NMDA) and non-NMDA receptors on electrophysiologically identified nondopamine neurones in the ventral tegmental area (VTA) was tested in rat midbrain slice preparations. NMDA, kainate (KA), and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) depolarized the membrane potential of nondopamine neurons in a dose-dependent manner. The NMDA effect was blocked by the selective NMDA receptor antagonist, CGS 19755 (cis-4-phosphonomethyl-2-piperidine carboxylate), but not by the non-NMDA receptor antagonist, NBOX [2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline]. In contrast, the effects of KA and AMPA were antagonized by NBOX, but not by CGS 19755. The rank order potency of the three agonists was AMPA > KA > NMDA, with thresholds of 0.1, 0.3, and 3 μM, respectively. These results provide clear electrophysiological evidence that nondopamine neurons in the ventral tegmental area possess both NMDA and non-NMDA receptors.  相似文献   

20.
The effect of sex, age (range = 41–84 years), postmortem delay (range = 1–71 h) and freezing storage time (FST) (range = 8–75 months) at −25°C on the density of muscarinic receptors (MR) was examined in tissue sections of several representative areas of 41 postmortem brains from adult patients who had died from non-neurological disorders using [3H]N-methylscopolamine as a ligand. Neither age, sex nor postmortem delay determined significant changes in the density of MR in frontal and entorhinal cortex, hippocampus and striatum. By contrast, FST significantly decreased the densities of MR in frontal and entorhinal cortex, pyramidal layer of CA1 and CA3 fields at the hippocampus and over caudate nucleus. This reduction in MR densities did not reach statistical significance, for any region, when FST was less than 39 months. Although there was a tendency towards a decrease, no significant changes were observed in putamen and over hippocampal dentate gyrus. FST (range = 11–78 months) also significantly decreased the densities of MR in the same regions of postmortem brains from 18 patients who had died with a clinico-pathological diagnosis of Alzheimer's disease (AD). Even though there was a general tendency towards a decrease (between 7% in the caudate and 30% in the dentate gyrus at the hippocampus), no significant differences could be seen in MR densities between control and AD cases, except in the hilus in the dentate gyrus (P < 0.022), when brains were matched for FST. From the present results it is clear that control and diseased brains must also be matched for FST as well as for other factors such as sex, age and postmortem delay. It is possible that differences in FST could in part account for the variability of the reported results measuring MR in control and AD brains. At least for MR, FST shorter than three years would seem to be acceptable when performing this kind of studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号