首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheatwood JL  Corwin JV  Reep RL 《Brain research》2005,1036(1-2):90-100
Dorsocentral striatum (DCS) is an associative region necessary for directed attention in rats. DCS is defined as the main region in which axons from ipsilateral medial agranular cortex (AGm) terminate within the striatum. In this double-labeling study, we placed a green axonal tracer in area AGm and a red one in an additional brain region. We examined the spatial relationship between terminals from area AGm and other portions of the cortical-basal ganglia-thalamic-cortical network involved in directed attention and its dysfunction, hemispatial neglect, in the rat. These include lateral agranular cortex (AGl), posterior parietal cortex (PPC), ventrolateral orbital cortex (VLO), and secondary visual cortex (Oc2M). One important finding is the presence of a dense focus of labeled axons within DCS after injections in cortical area PPC or Oc2M. In these foci, axons from PPC or Oc2M extensively overlap and interdigitate with axons from cortical area AGm. Additionally, retrograde labeling of striatal neurons, along with double anterograde labeling, suggests that axons from cortical area AGm and AGl cross and possibly make contact with the dendritic processes of single medium spiny neurons. Axons from thalamic nucleus LP were observed to form a dense band dorsal to DCS which is similar to that seen following PPC injections, and a significant number of LP axons were also observed within DCS. Projections from thalamic nucleus VL are present in the dense dorsolateral AGm band that abuts the external capsule, are densest in the dorsolateral striatum, and were not observed in DCS. These results extend previous findings that DCS receives input from diverse cortical areas and thalamic nuclei which are themselves interconnected.  相似文献   

2.
The dorsocentral striatum (DCS) is the major site of input from medial agranular cortex (AGm) and has been implicated as an associative striatal area that is part of a cortical-subcortical circuit involved in multimodal spatial functions involving directed attention. Anterograde axonal tracing was used to investigate the spatial organization of corticostriatal projections to DCS. Injections of biotinylated dextran amine were made into several cortical areas known to project to DCS based on retrograde tracing data. These included areas AGm, lateral agranular cortex (AGl), orbital cortex, posterior parietal cortex (PPC), and visual association cortex. We discovered a previously undescribed geometry whereby the projection from AGm is prominent within DCS and the main corticostriatal projections from areas other than AGm are situated around the periphery of DCS: visual association cortex dorsomedially, PPC dorsally, AGl laterally, and orbital cortex ventrally. Each of these cortical projections is also represented by less dense aggregates of terminal labeling within DCS, organized as focal patches and more diffuse labeling. Because these cortical areas are linked by corticocortical connections, the present findings indicate that interconnected cortical areas have convergent terminal fields in the region of DCS. These findings suggest that DCS is a central associative region of the dorsal striatum characterized by a high degree of corticostriatal convergence.  相似文献   

3.
Medial agranular cortex (AGm) is a narrow, longitudinally oriented region known to have extensive corticortical connections. The rostral and caudal portions of AGm exhibit functional differences that may involve these connections. Therefore we have examined the rostrocaudal organization of the afferent cortical connections of AGm by using fluorescent tracers, to determine whether there are significant differences between rostral and caudal AGm. Mediolateral patterns have also been examined in order to compare the pattern of corticocortical connections of AGm to those of the laterally adjacent lateral agranular cortex (AGl) and medially adjacent anterior cingulate area (AC). In the rostrocaudal domain, there are notable patterns in the connections of AGm with somatic sensorimotor, visual, and retrosplenial cortex. Rostral AGm receives extensive afferents from the caudal part of somatic sensorimotor area Par I, whereas caudal AGm receives input largely from the hindlimb cortex (area HL). Middle portions of AGm show an intermediate condition, indicating a continuously changing pattern rather than the presence of sharp border zones. The whole of the second somatic sensorimotor area Par II projects to rostral AGm, whereas caudal AGm receives input only from the caudal portion of Par II. Visual cortex projections to AGm originate in areas Oc1, Oc2L and Oc2M. Connections of rostral AGm with visual cortex are noticeably less dense than those of mid and caudal AGm, and are focused in area Oc2L. The granular visual area Oc1 projects almost exclusively to mid and caudal AGm. Retrosplenial cortex has more extensive connections with caudal AGm than with rostral AGm, and the agranular and granular retrosplenial subregions are both involved. Other cortical connections of AGm show little or no apparent rostrocaudal topography. These include afferents from orbital, perirhinal, and entorhinal cortex, all of which are bilateral in origin. In the mediolateral dimension, AGm has more extensive corticocortical connections than either AGl or AC. Of these three neighboring areas, only AGm has connections with the somatic sensorimotor, visual, retrosplenial and orbital cortices. In keeping with its role as primary motor cortex, AGl is predominantly connected with area Par I of somatic sensorimotor cortex, specifically rostral Par I. AGl receives no input from visual or retrosplenial cortex. Anterior cingulate cortex has connections with visual area Oc2 and with retrosplenial cortex, but none with somatic sensorimotor cortex. Orbital cortex projections are sparse to AGl and do not appear to involve AC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
R L Reep  J V Corwin 《Brain research》1999,841(1-2):43-52
The rostral and caudal portions of rat medial agranular cortex (AGm) play different functional roles. To refine the anatomical framework for understanding these differences, axonal tracers were used to map the topography of the connections of AGm with the striatum and thalamus. The striatal projections follow mediolateral and rostrocaudal gradients that correspond to the locations of the neurons of origin within AGm. Projections from rostral AGm are widespread and dense rostrally, then coalesce into a circumscribed dorsocentral region at the level of the pre-commissural septal nuclei. Projections from mid and caudal AGm are less widespread and less dense, and are focused more caudally. Striatal projections from the adjacent anterior cingulate and lateral agranular areas overlap those of AGm but are concentrated more medially and laterally, respectively. Thalamic connections of AGm are organized so that more caudal portions of AGm have connections with progressively more lateral and caudal regions of the thalamus, and the full extent of AGm is connected with the ventrolateral (VL) nucleus. Rostral AGm is interconnected with the lateral portion of the mediodorsal nucleus (MD1), VL, and the central lateral (CL), paracentral (PC), central medial, rhomboid and ventromedial nuclei. Caudal AGm has robust connections with VL, the posterior, lateral posterior and lateral dorsal nuclei, but little or none with MD1, CL/PC and VM. These differences in the subcortical connections of rostral and caudal AGm parallel their known differences in corticocortical connections, and represent another basis for experimental explorations of the functional roles of these cortical territories.  相似文献   

5.
This study of the rostral part of medial agranular cortex (AGm) was undertaken with two principal aims in mind. First, to delineate the efferent connections of AGm and compare these with the pattern of afferents defined by us in a previous study. Second, to provide a firmer basis for anatomical and functional comparisons with cortical regions in monkeys. Autoradiographic, horseradish peroxidase, and fiber degeneration techniques were used. Rostral AGm has a variety of corticocortical connections--with lateral agranular motor cortex (AGl); visual, auditory, and somatic sensory regions; and limbic/paralimbic areas including orbital, insular, perirhinal, entorhinal, retrosplenial and presubicular fields. The projections to orbital, perirhinal and entorhinal cortices are bilateral. Thalamic projections of rostral AGm are concentrated in the ventral lateral, central lateral, paracentral, mediodorsal and ventromedial nuclei. Moderate terminal fields are consistently seen in the reticular, anteromedial, central medial, gelatinosus, parafascicular, and posterior nuclei. More caudal projections reach the central gray, superior colliculus and pontine gray. The efferents of the adjacent AGl were also examined. Although many of these overlapped those of rostral AGm, there were no efferents to visual or auditory cortex and limbic/paralimbic projections were reduced. Thalamic projections were more focused in the ventral lateral and posterior nuclei and there were no terminal fields in the central gray or superior colliculus. Based on its afferent and efferent connections, role in contralateral neglect, and the results of microstimulation studies, rostral AGm can be viewed as a multimodal association area with strong ties to the motor system. On these structural and functional grounds, rostral AGm bears certain striking resemblances to the frontal eye field, supplementary motor, and arcuate premotor areas of monkey cortex.  相似文献   

6.
Reduction of early thalamic input alters adult corticocortical connectivity   总被引:3,自引:0,他引:3  
The functional specificity of mammalian isocortex requires that precise connections be established between cortical areas and their targets. While recent studies of cortical development have focused on intrinsic specification, the role of extrinsic factors has received considerably less attention. In the present study, we examined how early removal of thalamic input affects the development of visual corticocortical connections. Hamster pups received ablations of visual thalamic nuclei on the day of birth. At 30 days of age, an injection of horseradish peroxidase (HRP) was placed into the area of cortex deafferented by the early thalamic ablation to retrogradely label adult corticocortical connections. Ablated animals displayed a significant increase in the number of corticocortical connections compared to control animals. The increased connectivity in ablated animals was primarily due to a significant increase in the number of corticocortical projections arising from non-visual areas. These results demonstrate that an intact thalamocortical projection is necessary for the development of normal cortical connectivity.  相似文献   

7.
A number of previous studies have indicated that an environmental manipulation, 48 h of light deprivation (LD), produces virtually complete and permanent behavioral recovery of function from neglect induced by medial agranular cortex (AGm) lesions. LD-induced behavioral recovery from neglect is correlated with physiological changes in the dorsolateral striatum, an area that contains the projection zone of AGm efferents in the dorsocentral striatum (DCS). In this study, the behavioral effects of 48 h of LD on subjects with either unilateral DCS, AGm, or combined AGm/DCS lesions were investigated to examine whether the integrity of the DCS is crucial for behavioral recovery from neglect and whether LD will have a therapeutic effect on extinction deficits. Subjects were tested for extinction to bilateral simultaneous stimulation of the forepaws, and visual, auditory and tactile neglect. Forty-eight hours of LD failed to produce behavioral recovery from neglect in rats with DCS lesions, or a therapeutic affect on extinction deficits in any of the groups. The results of this study further support the crucial role of the DCS in recovery from neglect induced by AGm lesions and suggests that the DCS may be the crucial site for the mechanisms leading to LD-induced recovery. Further, the ineffectiveness of LD on extinction suggests that components of the neglect syndrome are dissociable and may require different therapeutic interventions.  相似文献   

8.
The thalamic afferents to two areas of the lateral suprasylvian visual cortex in the cat were studied by using retrograde transport of horseradish peroxidase (HRP). Injections were localized retinotopically with electrophysiological recording. The posteromedial lateral suprasylvian area (PMLS) of Palmer et al. ('78) receives afferents from the pulvinar (P), the posterior nucleus of Rioch (PN), the C-laminae of the lateral geniculate nucleus (LGNd) and the centrolateral (CL), lateral posterior (LP), medial interlaminar (MIN) nuclei. The anteromedial lateral suprasylvian area (AMLS) receives afferents from CL, P, LP, PN, MIN, and probably from the posterior nuclear group (PO), and the lateral dorsal (LD) and ventral anterior (VA) nuclei. The LP-pulvinar complex has been divided into four zones on the basis of connectivity: geniculate wing, pulvinar, the lateral division of LP, and the interjacent division of LP (Updyke, '77; Graybiel and Berson, '80; Guillery et al., '80). The locations of labeled cells in the present experiments suggest that both AMLS and PMLS receive afferents from each of the four zones, although differences exist in the strength of the projections. While AMLS and PMLS receive afferents from many of the same nuclei (CL, P, LP, PN, and MIN), differences in their afferents also were noted. These differences are of three types. The first is that some nuclei project to only one of the cortical areas. PMLS alone receives input from the C-laminae of the LGNd while AMLS alone receives probable input from PO, LD, and VA. The second difference is in the strength of the projection from some nuclei. AMLS receives a stronger projection from CL and P than does PMLS. The third difference concerns the pattern of distribution of neurons that project to each cortical area. Labeled cells in LP are dispersed after an AMLS injection, but are found in clusters or bands after a PMLS injection. Thus our results indicate that the thalamic afferents to AMLS and PMLS are in general similar: however, differences in input to AMLS and PMLS suggest that inputs to PMLS are predominantly visual while AMLS receives a broader spectrum of afferent information.  相似文献   

9.
The orbitofrontal cortex of the monkey can be subdivided into a caudal agranular sector, a transitional dysgranular sector, and an anterior granular sector. The neural input into these sectors was investigated with the help of large horseradish peroxidase injections that covered the different sectors of orbitofrontal cortex. The distribution of retrograde labeling showed that the majority of the cortical projections to orbitofrontal cortex arises from a restricted set of telencephalic sources, which include prefrontal cortex, lateral, and inferomedial temporal cortex, the temporal pole, cingulate gyrus, insula, entorhinal cortex, hippocampus, amygdala, and claustrum. The posterior portion of the orbitofrontal cortex receives additional input from the piriform cortex and the anterolateral portion from gustatory, somatosensory, and premotor areas. Thalamic projections to the orbitofrontal cortex arise from midline and intralaminar nuclei, from the anteromedial nucleus, the medial dorsal nucleus, and the pulvinar nucleus. Orbitofrontal cortex also receives projections from the hypothalamus, nucleus basalis, ventral tegmental area, the raphe nuclei, the nucleus locus coeruleus, and scattered neurons of the pontomesencephalic tegmentum. The non-isocortical (agranular-dysgranular) sectors of orbitofrontal cortex receive more intense projections from the non-isocortical sectors of paralimbic areas, the hippocampus, amygdala, and midline thalamic nuclei, whereas the isocortical (granular) sector receives more intense projections from the dorsolateral prefrontal area, the granular insula, granular temporopolar cortex, posterolateral temporal cortex, and from the medial dorsal and pulvinar thalamic nuclei. Retrograde labeling within cingulate, entorhinal, and hippocampal cortices was most pronounced when the injection site extended medially into the dysgranular paraolfactory cortex of the gyrus rectus, an area that can be conceptualized as an orbitofrontal extension of the cingulate complex. These observations demonstrate that the orbitofrontal cortex has cytoarchitectonically organized projections and that it provides a convergence zone for afferents from heteromodal association and limbic areas. The diverse connections of orbitofrontal cortex are in keeping with the participation of this region in visceral, gustatory, and olfactory functions and with its importance in memory, motivation, and epileptogenesis.  相似文献   

10.
This study refines the characterization of the rat parietal cortical domain in terms of cyto‐ and chemoarchitecture as well as thalamic connectivity. We recognize three subdivisions of the posterior parietal cortex (PPC), which are architectonically distinct from the neighboring somatosensory and visual cortices. Furthermore, we show that the different parietal areas are differently connected with thalamic nuclei. The medial portion of PPC (mPPC) is connected primarily with the medial portion of the lateral posterior nucleus (LP), whereas the lateral portion (lPPC) connects with the posterior complex (Po). The more caudolateral part of PPC (PtP) also projects to Po but can be distinguished from lPPC based on architectonic criteria. The primary somatic and visual cortices, neighboring PPC, are preferentially connected with the primary ventral posterior and dorsolateral geniculate nuclei, respectively, and less with the associational Po and LP. Particularly the border between the secondary visual cortex and the PPC has been a matter of controversy, but here we show that, although PPC subareas are connected with Po and medial LP, the medial and lateral secondary visual cortices are connected with lateral LP and a portion of medial LP different from that connected with PPC. The resulting delineations and specifications of connectivity with thalamic nuclei together with upcoming studies of cortical connectivity will facilitate detailed studies on the role of the subdivisions of PPC in the rat as diverse, higher order associative cortical areas, comparable to those described in the primate.for J. Comp. Neurol. 524:3774–3809, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Organization of the Visual Reticular Thalamic Nucleus of the Rat   总被引:2,自引:0,他引:2  
The visual sector of the reticular thalamic nucleus has come under some intense scrutiny over recent years, principally because of the key role that the nucleus plays in the processing of visual information. Despite this scrutiny, we know very little of how the connections between the reticular nucleus and the different areas of visual cortex and the different visual dorsal thalamic nuclei are organized. This study examines the patterns of reticular connections with the visual cortex and the dorsal thalamus in the rat, a species where the visual pathways have been well documented. Biotinylated dextran, an anterograde and retrograde tracer, was injected into different visual cortical areas [17; rostral 18a: presumed area AL (anterolateral); caudal 18a: presumed area LM (lateromedial); rostral 18b: presumed area AM (anteromedial); caudal 18b: presumed area PM (posteromedial)] and into the different visual dorsal thalamic nuclei (posterior thalamic, lateral posterior, lateral geniculate nuclei), and the patterns of anterograde and retrograde labelling in the reticular nucleus were examined. From the cortical injections, we find that the visual sector of the reticular nucleus is divided into subsectors that each receive an input from a distinct visual cortical area, with little or no overlap. Further, the resulting pattern of cortical terminations in the reticular nucleus reflects largely the patterns of termination in the dorsal thalamus. That is, each cortical area projects to a largely distinct subsector of the reticular nucleus, as it does to a largely distinct dorsal thalamic nucleus. As with each of the visual cortical areas, each of the visual dorsal thalamic (lateral geniculate, lateral posterior, posterior thalamic) nuclei relate to a separate territory of the reticular nucleus, with little or no overlap. Each of these dorsal thalamic territories within the reticular nucleus receives inputs from one or more of the visual cortical areas. For instance, the region of the reticular nucleus that is labelled after an injection into the lateral geniculate nucleus encompasses the reticular regions which receive afferents from cortical areas 17, rostral 18b and caudal 18b. These results suggest that individual cortical areas may influence the activity of different dorsal thalamic nuclei through their reticular connections.  相似文献   

12.
A number of previous studies have indicated that lesions of the medial agranular cortex (AGm) in rats induce multimodal neglect and extinction to bilateral simultaneous stimulation (extinction), the two major symptoms of the neglect syndrome in humans. A recent study demonstrated that lesions of dorsocentral striatum (DCS), the site of AGm projections to the striatum, produce multimodal neglect qualitatively similar to that found with AGm lesions. In the present study, the behavioral effects of unilateral DCS lesions were examined in more detail for the major manifestations of neglect: hemineglect, extinction, and allesthesia/allokinesia. Subjects were tested for extinction to bilateral simultaneous stimulation of the forepaws three times a week for 3 weeks. Neglect testing occurred twice weekly and the subjects were tested for the presence of neglect by rating the magnitude of orientation to visual, tactile, and auditory stimulation. The results indicated that DCS operates, while demonstrating severe neglect, failed to demonstrate extinction or allesthesia/allokinesia. These findings suggest that the neural mechanisms that underlie neglect and extinction are dissociable in this system. A better understanding of the neural mechanisms that underlie extinction is particularly important because humans that have recovered from neglect often continue to demonstrate the debilitating symptoms of extinction.  相似文献   

13.
K. Niimi  M. Niimi  Y. Okada 《Brain research》1978,145(2):225-238
Thalamic afferents to the limbic cortex in the cat were studied with the method of retrograde axonal transport of horseradish peroxidase. The anterior limbic region receives fibers largely from the anteromedial nucleus and partly from the anterodorsal and anteroventral nuclei. There appears to be a dorsoventral organization of cortical projections of the anteromedial nucleus to the anterior limbic region. The cingular area has its main input from the anteroventral and anteromedial nuclei. The lower bank and fundus of the splenial sulcus receive fibers from the anteroventral nucleus, particularly its parvocellular part. The retrosplenial area receives projections from the naterodorsal, anteroventral and anteromedial nuclei. The agranular retrosplenial area (area 30) recieves hardly any fibers from the anterior thalamic nuclei. The postsubicular and presubicular areas receive cortical afferents from the anterodorsal, anteroventral (both magnocellular and parvocellular parts) and anteromedial nuclei. In addition, the limbic cortex receives many fibers from the dorsal lateral, medial pulvinar and lateral pulvinar nuclei, and few fibers from the intralaminar and midline nuclei.  相似文献   

14.
The afferent projections from the prosencephalon to the mediodorsal thalamic nucleus (MD) were studied in the cat by use of the method of retrograde transport of horseradish peroxidase (HRP). Cortical and subcortical prosencephalic structures project bilaterally to the MD. The cortical afferents originate mainly in the ipsilateral prefrontal cortex. The premotor, prelimbic, anterior limbic, and insular agranular cortical areas are also origins of consistent projections to the MD. The motor cortex, insular granular area, and some other cortical association areas may be the source of cortical connections to the MD. The subcortical projections originate principally in the ipsilateral rostral part of the reticular thalamic nucleus and the rostral lateral hypothalamic area. Other parts of the hypothalamus, the most caudal parts of the thalamic reticular nucleus, the basal prosencephalic structures, the zona incerta, the claustrum, and the entopeduncular and subthalamic nuclei are also sources of projections to the MD. Distinct, but somewhat overlapping areas of the prosencephalon project to the three vertical subdivisions of MD (medial, intermediate, and lateral). The medial band of the MD receives a small number of prosencephalic projections; these arise mainly in the caudal and ventral parts of the prefrontal cortex. Cortical projections also arise in the infralimbic area, while subcortical projections originate in the medial part of the rostral reticular thalamic nucleus and lateral hypothalamic area. The intermediate band of the MD receives the largest number of fibers from the prosencephalon. These arise principally in the intermediate and dorsal part of the lateral and medial surface of the prefrontal cortex, the premotor cortex, and the prelimbic and agranular insular areas. Projections also originate in basal prosencephalic formations (preoptic area, Broca's diagonal band, substantia innominata, and olfactory tubercle), rostral reticular thalamic nucleus, and lateral hypothalamic area. A large number of prosencephalic structures also project to the lateral band of the MD. These are mainly the most dorsal and caudal parts of the lateral and medial surface of the prefrontal cortex, the premotor and motor cortices, and the prelimbic, anterior limbic, and insular areas. Projections arise also in the lateral rostral and caudal parts of the reticular thalamic nucleus, the zona incerta, the lateral and dorsal hypothalamic areas, the claustrum, and the entopeduncular nucleus. These and previous results demonstrate a gradation in the afferent connections to the three subdivisions of the MD. Brain structures related to the olfactory sensory modality and with allocortical formations of the limbic system project principally to the medial band of the MD. The intermediate band of the MD receives subcortical and cortical projections from structures mainly related to the limbic system and cortical regions related to sensory association cortices. The lateral band of the MD receives projections mainly originating in structures related to complex sensory associative processes and to the motor system (especially from brainstem and cortical structures implicated in the regulation of eye movements).  相似文献   

15.
The afferent thalamic connections to cortical fields important for control of head movement in space were analysed by intracortical retrograde tracer injections. The proprioceptive/vestibular area 3aV, the neck-trunk region of area 3a, receives two thirds of its thalamic projections from the oral and superior ventroposterior nucleus (VPO/VPS), which is considered as the proprioceptive relay of the ventroposterior complex (Kaas et al., J. Comp. Neurol. 226:211-240, 1984). The parieto-insular vestibular cortex (PIVC, area retroinsularis, Ri) receives its main thalamic input from posterior parts of the ventroposterior complex and from the medial pulvinar. Anatomical evidence is presented that the posterior region of the ventroposterior complex is a special compartment within this principal somatosensory relay complex. The parietotemporal association area T3, mainly involved in visual-optokinetic signal processing, receives a substantial input from the medial, the lateral, and the inferior pulvinar. Dual tracer experiments revealed that about 5% of the thalamic neurons projecting to 3aV were spatially intermingled with neurons projecting to areas PIVC or T3. This spatial intermingling was distributed over small but numerous, circumscribed thalamic regions, called "common patches," which were found mainly in the intralaminar nuclei, the posterior group of thalamic nuclei, and the caudal parts of the ventroposterior complex. The "common patches" may indicate a functional coupling of area 3aV with the PIVC or area T3 on the thalamic level. In control experiments thalamic projections to the granular insula Ig and the anterior part of area 7, two cerebral structures connected with the vestibular cortical areas, were studied. Some overlap in the thalamic relay structures projecting to these areas with those projecting to the vestibular cortices was found. A quantitative evaluation of thalamic regions projecting to different cortical structures was performed by constructing so-called "thalamograms." A scheme was developed that describes the afferent thalamic connections by which vestibular, visual-optokinetic, and proprioceptive signals reach the vestibular cortical areas PIVC and 3aV.  相似文献   

16.
The thalamocortical connections of the superior temporal sulcus (STS) were studied by means of the WGA-HRP retrograde tracing technique. The results indicate that the distribution of thalamic projections varies along the rostral-caudal dimension of the STS. Thus the rostral portion of the upper bank receives input primarily from the medialmost portion of the medial pulvinar (PM) nucleus. The middle region of the upper bank receives projections from medial and central portions of the PM nucleus, and also from the oral pulvinar, limitans, suprageniculate, medial geniculate, and dorsomedial nuclei. The cortex of the caudal portion of the upper bank has basically similar thalamic input; however, the projections from the PM nucleus originate in central and lateral portions. Additionally, there are projections from the lateral pulvinar (PL), ventroposterolateral, central lateral, parafascicular, and paracentral nuclei. In contrast to the dorsal bank, the cortex of the ventral bank of the STS receives somewhat different and less extensive thalamic input. The rostral portion of the lower bank receives projections only from the ventromedial sector of the PM nucleus, whereas the middle portion of the lower bank receives projections from the PL and the inferior pulvinar nuclei as well as from the PM nucleus. The upper bank of the STS, on the basis of physiological and anatomical studies (Jones and Powell, '70; Seltzer and Pandya, '78; Gross et al., '81; Baylis et al., '87), has been shown to contain multimodal areas. The present data indicate that the multimodal region of the STS has a preferential relationship with the central sector of the PM nucleus.  相似文献   

17.
Cortical afferent projections towards the medial prefrontal cortex (mPFC) were investigated with retrograde and anterograde tracer techniques. Heterotopical afferent projections to the medial prefrontal cortex arise in secondary, or higher order, sensory areas, motor areas and paralimbic cortices. On the basis of these projections three subfields can be discriminated within the mPFC. (1) The ventromedial part of mPFC, comprising the pre- and infralimbic areas, receives mainly projections from the perirhinal cortex. (2) The caudal two-thirds of the dorsomedial PFC, comprising frontal area 2 and the dorsal anterior cingulate area, receives projections from the secondary visual areas, the posterior agranular insular area and the retrosplenial areas. (3) The rostral one-third of the dorsomedial PFC is the main recipient of projections from the somatosensory and motor areas and the posterior agranular insular area. The laminar distribution of cells projecting to the mPFC varies considerably in the different cortical areas, just as the laminar distribution of termination of their fibres within the mPFC does. It is concluded that the corticocortical connections corroborate with subcortical connectivity in attributing to the mediodorsal projection cortex of the rat functions which are comparable to those of certain prefrontal, premotor and anterior cingulate areas in the monkey.  相似文献   

18.
Anatomophysiological criteria underlying the definition of associative cortex as well as limbic cortex include some imprecise data. The original notion of "cortical association spheres" (Flechsig) with no connections with the thalamus has rightly been abandoned, and that of the macroscopic "large limbic lobe" (Broca) fails to stand up to histologic or hodologic findings. However, the concept of cortical areas implicated specifically in multiple sensorial integration, sensory-motor coupling and control of behavior lasts due to necessity. In the monkey, the posterior parietal cortex of area 7 (PG area), the cortex of the upper slope of the superior temporal sulcus (STS) and the prefrontal cortex anterior to the sulcus arcuatus exchange direct corticocortical connections, receive afferents from sensory cortex and are not connected to specific thalamic relays. The term "associative" in its widest sense applies more particularly therefore to these cortical areas organized in networks. On the internal surface of the hemisphere, the cingular gyrus, retrosplenial cortex and parahippocampic gyrus (TF and TH areas) which occupy the major part of the limbic lobe, participate in the formation of this network and exchange direct cortico-cortical connections with the associative cortex defined above. The use of anterograde (labelled aminoacids) and retrograde (peroxidases) markers and of fluorescent dyes, allowing double retrograde labelling, demonstrates that the median pulvinar nucleus is connected with the knots of the associative cortical network. This thalamic nucleus, of a relatively increased size from phylogenetic evolution, is therefore excluded from the classification opposing specific and diffuse projection nuclei. In contrast to the thalamic reticular nucleus, which lacks cortical projections, and to the nuclei of the internal medullary band, which have the striatum as main target, the median pulvinar is a thalamic structure connected directly and specifically with each of the cortical areas, lesions of which result in negligence behavior.  相似文献   

19.
The posterior parietal cortex (PPC) is a multifaceted region of cortex, contributing to several cognitive processes, including sensorimotor integration and spatial navigation. Although recent years have seen a considerable rise in the use of rodents, particularly mice, to investigate PPC and related networks, a coherent anatomical definition of PPC in the mouse is still lacking. To address this, we delineated the mouse PPC, using cyto‐ and chemoarchitectural markers from Nissl‐, parvalbumin‐and muscarinic acetylcholine receptor M2‐staining. Additionally, we performed bilateral triple anterograde tracer injections in primary visual cortex (V1) and prepared flattened tangential sections from one hemisphere and coronal sections from the other, allowing us to co‐register the cytoarchitectural features of PPC with V1 projections. This revealed that extrastriate area A was largely contained within lateral PPC, that medial PPC overlapped with the anterior portion of area AM, and that anterior RL overlapped partially with area PtP. Furthermore, triple anterograde tracer injections in PPC showed strong projections to associative thalamic nuclei as well as higher visual areas, orbitofrontal, cingulate and secondary motor cortices. Retrograde circuit mapping with rabies virus further showed that all cortical connections were reciprocal. These combined approaches provide a coherent definition of mouse PPC that incorporates laminar architecture, extrastriate projections, thalamic, and cortico–cortical connections.  相似文献   

20.
On the basis of studies using intracortical microstimulation, the existence of rostrocaudally separate two forelimb representation areas has been inferred in the motor cortex of rats. They are termed caudal and rostral forelimb areas (CFA and RFA). In this study, it was confirmed first that RFA and CFA are located in cytoarchitectonically distinct areas (medial and lateral parts of agranular cortex (AGm and AGl), respectively). In the second part of this study, the distribution of thalamic and cortical neurons projecting to RFA and CFA was quantitatively compared by injections of small and relatively constant amounts of retrograde fluorescent dyes (diamidino yellow and fast blue) into these areas. It was observed that (1) main inputs to RFA originated from AGl, namely CFA (2) CFA received dominant inputs from AGm including RFA and caudally adjacent granular cortex and (3) wider cortical areas and larger number of neurons projected to CFA than to RFA. As for the thalamocortical projections, both RFA and CFA received inputs from various thalamic nuclei, such as VL, VM, Po, PC, PF, CL, but cells projecting to RFA and CFA were differentially located in each nucleus. It was found that labeled cell number and/or density in VM, PC, CL, CM and MD after RFA injections were significantly larger than those after CFA injections. On the other hand, labeled cell number and/or density in VPL and VL were significantly higher after CFA injections than after RFA injections. In comparison with findings in primates, the results suggest that the cortical motor areas of rats may be specialized for different aspects of motor control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号