首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
神经突触具有高度可塑性,突触的形成和重塑是神经元活动依赖性的,是学习记忆、认知功能的基础。包括阿尔茨海默病(AD)在内的多种表现出认知缺陷的神经疾病,均存在突触结构或者功能的异常。AD病程缓慢,临床早期表现为单纯的记忆功能损伤,证据显示此症状是海马突触效能发生微细改变所致。近20年来,大量实验证实β-淀粉样蛋白(Aβ)寡聚体能够弥散到突触间隙,是最早的损害突触完整性和可塑性的因素。多种不同来源的Aβ寡聚体(包括体外合成的,细胞分泌的,AD转基因动物和AD患者脑内的),能够破坏海马脑片或者动物在体的长时程增强效应(Long-term potentiation, LTP),降低器官型培养的海马脑片的树突棘密度,损害啮齿类动物的认知和记忆功能。AD患者皮质中可溶性Aβ(包括寡聚体)的水平与认知功能呈强相关性。而不可溶的淀粉样沉淀可能是作为具有突触毒性的寡聚体的一种储备。  相似文献   

2.
阿尔茨海默病中突触结构的损伤   总被引:1,自引:0,他引:1  
神经突触具有高度可塑性,突触的形成和重塑是神经元活性依赖性的,是学习记忆、认知功能的基础。包括阿尔茨海默病(AD)在内的多种表现出认知缺陷的神经疾病。均存在突触结构或者功能的异常。AD病程缓慢,临床早期表现为单纯的记忆功能损伤,随病程深入,AD认知障碍进行性加重,并出现明显的神经退行性病变。其中新皮质、海马的联合区的突触密度下降,在AD的早期即出现,并且与认知功能下降呈现最显著的相关性。年龄似乎并不是突触丢失的促因。本文将回顾AD中突触损伤的相关研究,并讨论脑内神经连接下降后的可能代偿机制。  相似文献   

3.
阿尔茨海默病(AD)是老年人群中最普遍的神经退行性疾病,其主要特征是海马区淀粉样蛋白寡聚体的沉积.β-淀粉样蛋白(Aβ)聚合成寡聚状态被认为是AD发病过程中最重要的环节,而海马区是AD发病中的最敏感的区域.AD的早期临床症状即包括与海马相关的认知功能的下降,如空间学习和记忆能力的下降等.长时程增强(LTP)是反映突触可塑性的重要指标之一,被认为与学习和记忆的形成有关.本文结合近年来相关研究,就Aβ对海马LTP的影响及其主要机制作一阐述.  相似文献   

4.
目的:海马注射β-淀粉样蛋白(Aβ)建立阿尔茨海默病(AD)大鼠模型,并进行初步评价。方法:应用凝聚态Aβ1-40进行大鼠右侧海马齿状回(DG)背侧细胞带微量注射,2周后从学州记忆、海马组织病理和异常磷酸化tau蛋白表达的变化3个方面评价大鼠模型。结果:Aβ1-40注射后大鼠Morris水迷宫学习记忆能力明显受损(P〈0.01);注射区内DG背侧细胞带神经元丢失(P〈0.01);注射侧海乌内Aβ沉积;海马神经元内异常磷酸化tau蛋白的表达显著增加(P〈0.01)。结论:凝聚态Aβ1-40海马注射具有明确的在体神经毒性作用,可导致大鼠认知功能下降以及海马内Aβ沉积、神经元丢失和神经元内异常磷酸化tau蛋白的表达,可成功建立AD大鼠模型。  相似文献   

5.
目的探讨α-突触核蛋白(α-Syn)和β淀粉样蛋白(Aβ1-42)寡聚体对小鼠原代皮质、海马神经细胞突触功能和活性的影响。方法分别采用二甲基亚砜、Aβ42-1寡聚体、α-Syn、Aβ1-42寡聚体、α-Syn+Aβ42-1寡聚体、α-Syn+Aβ1-42寡聚体干预小鼠原代皮质和海马神经元,按不同干预方法分为6组。干预24 h后用免疫荧光、FM1-43染色法检测神经元的突触数量及活性,同时用Western blot法检测半胱氨酸伸展蛋白α(CSPα)表达。结果与其余5组比较,α-Syn+Aβ1-42寡聚体组可使突触相关CSPα表达明显下降(P0.01)、与突触数目相关的突触蛋白Ⅰ明显降低(P0.01),同时突触活性也明显下降(P0.01)。结论α-Syn和Aβ1-42寡聚体可协同作用于神经元,减少CSPα表达,降低细胞突触数目及其功能。  相似文献   

6.
纹状体富集的蛋白酪氨酸磷酸酶(STEP)作为大脑特有的一种酪氨酸磷酸酶,对突触可塑性、神经元生存及发展等具有重要调节作用。Aβ寡聚体在阿尔茨海默病(AD)早期引发级联反应损害突触功能并导致突触及神经元减少,导致认知障碍。在AD转基因动物脑组织及AD患者前额叶,STEP61的表达增高,Aβ处理的神经元STEP表达及活性升高,本文将探讨STEP的调节功能及STEP与Aβ之间的相互作用在AD发病中的意义。  相似文献   

7.
阿尔茨海默病(AD)是一种常见的老年认知障碍性疾病。Aβ所致的突触丧失是AD脑组织中一个较为突出的神经病理改变,是AD患者学习记忆功能减退的病理学基础。本文将近年来Aβ与突触损伤的相关性及其分子机制的研究进展作一概述。  相似文献   

8.
干预Aβ代谢及其毒性治疗阿尔茨海默病的研究现状及展望   总被引:1,自引:0,他引:1  
β淀粉样蛋白(Aβ)是阿尔茨海默病(AD)特征性病理改变之一。淀粉样前体蛋白(APP)经分泌酶水解后产生有毒性的Aβ,转运至大脑异常聚集产生Aβ寡聚体,从而引起线粒体功能障碍、氧化应激、突触传递功能障碍等,最终引起乙酰胆碱酯酶神经元坏死,导致痴呆。因此减少Aβ在脑内的产生、促进Aβ清除、抑制Aβ聚集以及降低其神经毒性已成为治疗AD的主要措施之一,本文针对干预Aβ代谢及其神经毒性治疗AD的研究作一综述。  相似文献   

9.
阿尔茨海默病(AD)临床常见进行性认知功能下降,行为异常,最终出现痴呆。神经病理 可见 tau 蛋白神经纤维缠结、β-淀粉样蛋白(Aβ)蓄积形成老年斑,以及小胶质细胞增生和神经元、白 质、突触的大量缺失。由于淀粉样蛋白病理可能早于 tau 蛋白病理,早于 AD 脑萎缩及临床症状的出现, 现阐述 Aβ 代谢异常与 AD 的相关性。  相似文献   

10.
脑源性神经营养因子与阿尔茨海默病   总被引:1,自引:0,他引:1  
脑源性神经营养因子(BDNF)能够支持多种神经元生存、发育、分化及修复,并通过调节海马突触传递和突触可塑性,诱发及维持突触前和突触后的长时程增强效应(LTP),改变海马神经元的形态可塑性等机制,参与海马依赖的学习和记忆过程。BDNF与阿尔茨海默病(AD)的发病密切相笑。研究发现AD患者海马和大脑皮质的BDNF含量下降;BDNF缺乏可能通过降低海马突触可塑性及减少对海马神经元的支持营养,从而导致学习记忆障碍;BDNF缺乏还与AD患者常见的精神症状有关。  相似文献   

11.
Alzheimer's disease (AD) is a slowly progressing form of dementia characterized in its earliest stages as a loss of memory. Individuals with amnestic mild cognitive impairment (aMCI) may be in the earliest stages of the disease and represent an opportunity to identify pathological changes related to the progression of AD. Synaptic loss is one of the hallmarks of AD and associated with cognitive impairment. The inferior temporal gyrus plays an important role in verbal fluency, a cognitive function affected early in the onset of AD. Unbiased stereology coupled with electron microscopy was used to quantify total synaptic numbers in lamina 3 of the inferior temporal gyrus from short postmortem autopsy tissue harvested from subjects who died at different cognitive stages during the progression of AD. Individuals with aMCI had significantly fewer synapses (36%) compared to individuals with no cognitive impairment. Individuals with AD showed a loss of synapses very similar to the aMCI cohort. Synaptic numbers correlated highly with Mini Mental State Examination scores and a test of category verbal fluency. These results demonstrate that the inferior temporal gyrus is affected during the prodromal stage of the disease and may underlie some of the early AD-related clinical dysfunctions.  相似文献   

12.
Alterations in the relative abundance of synaptic proteins may contribute to hippocampal synaptic dysfunction in Alzheimer's disease (AD). The extent to which perturbations in synaptic protein expression occur during the earliest stages of cognitive decline remains unclear. We examined protein levels of presynaptic synaptophysin (SYP) and synaptotagmin (SYT), and postsynaptic drebrin (DRB), a marker for dendritic spine plasticity, in the hippocampus of people with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild/moderate AD. Although normalized SYP and SYT levels were preserved, DRB was reduced by approximately 40% in the hippocampus of MCI and AD compared to NCI subjects. This differential alteration of synaptic markers in MCI suggests a selective impairment in hippocampal postsynaptic dendritic plasticity in prodromal AD that likely heralds the onset of memory impairment in symptomatic disease.  相似文献   

13.
Synaptic dysfunction is an early event in the development of Alzheimer's disease (AD) and relates closely to the cognitive impairment characterizing this neurodegenerative process. A causative association has been proposed, largely on the basis of in vitro studies, between memory decline, soluble amyloid-β (Aβ) oligomers and alterations of glutamatergic neurotransmission. We aimed here to characterize in vivo N-methyl-D-aspartate receptor (NMDAR)-mediated signaling, at an early stage of AD, before extracellular amyloid plaques are deposited. We assessed the functional link between cognitive abilities and NMDAR-mediated pharmacological responses of six-month-old AβPP23 transgenic mice (AβPP23tg), overexpressing the human amyloid-β protein precursor carrying the Swedish double mutation. We found evidence of cognitive impairments in these mice, indicated by deficits in the delayed-non-matching-to-place task. Alterations of NMDAR-mediated signaling in this mouse model were confirmed by the reduced sensitivity of motor-activation and working memory to pharmacological inhibition of NMDAR activity. At the molecular level, AβPP23tg mice show hippocampal alterations in the trafficking of synaptic NMDAR subunits NR2A and NR2B and at an ultrastructural analysis show Aβ oligomers intracellularly localized in the synaptic compartments. Importantly, the behavioral and biochemical alterations of NMDAR signaling are associated with the inhibition of long-term synaptic potentiation and inversion of metaplasticity at CA1 synapses in hippocampal slices from AβPP23tg mice. These results indicate a general impairment of synaptic function and learning and memory in young AβPP23tg mice with Aβ oligomers but no amyloid plaques.  相似文献   

14.
ABSTRACT: Alzheimer's disease (AD) is characterized by episodic memory impairment that often precedes clinical diagnosis by many years. Probing the mechanisms of such impairment may provide much needed means of diagnosis and therapeutic intervention at an early, predementia, stage. Prior to the onset of significant neurodegeneration, the structural and functional integrity of synapses in mnemonic circuitry is severely compromised in the presence of amyloidosis. This review examines recent evidence evaluating the role of amyloid-beta protein (Abeta) in causing rapid disruption of synaptic plasticity and memory impairment. We evaluate the relative importance of different sizes and conformations of Abeta, including monomer, oligomer, protofibril and fibril. We pay particular attention to recent controversies over the relevance to the pathophysiology of AD of different water soluble Abeta aggregates and the importance of cellular prion protein in mediating their effects. Current data are consistent with the view that both low-n oligomers and larger soluble assemblies present in AD brain, some of them via a direct interaction with cellular prion protein, cause synaptic memory failure. At the two extremes of aggregation, monomers and fibrils appear to act in vivo both as sources and sinks of certain metastable conformations of soluble aggregates that powerfully disrupt synaptic plasticity. The same principle appears to apply to other synaptotoxicamyloidogenic proteins including tau, alpha-synuclein and prion protein.  相似文献   

15.
Protein kinase Mzeta (PKMzeta), an atypical protein kinase C (PKC) isoform, plays a key role in the maintenance of long-term potentiation (LTP), a persistent enhancement of AMPA receptor-mediated synaptic transmission, as well as in the persistence of memory in Drosophila. Because memory impairment in Alzheimer disease (AD) has been attributed to disruption of synaptic plasticity, we investigated the expression and distribution of PKMzeta in this disorder. We found that PKMzeta accumulated in neurofibrillary tangles (NFTs), whereas conventional and novel PKC isoforms did not. Unlike tau, which is present in all NFTs regardless of location, PKMzeta was found in a subset of NFTs restricted to limbic or medial temporal lobe structures (i.e. hippocampal formation, entorhinal cortex, and amygdala), areas implicated in memory loss in AD. Interestingly, PKMzeta was not identified in any NFTs in control brains derived from 6 elderly individuals without known cognitive impairment. In medial temporal lobe structures in AD, PKMzeta also occurred within abnormal neurites expressing MAP2, GluR1 and GluR2 as well as in perisomatic granules expressing GluR1 and GluR2, suggesting that aggregation of PKMzeta disrupts glutamatergic synaptic transmission. Together, these findings suggest a link between PKMzeta-mediated synaptic plasticity and memory impairment in AD.  相似文献   

16.
The progressive memory loss observed in Alzheimer's disease (AD) is accompanied by an increase in the levels of amyloid-beta peptide (Abeta) and a block of synaptic plasticity. Both synaptic plasticity and memory require changes in the expression of synaptic proteins such as the activity-regulated cytoskeleton-associated protein, Arc (also termed Arg3.1). Using a model of synaptic plasticity in which BDNF increases Arc expression in cultured cortical neurons, we have found that an oligomeric form of Abeta strongly inhibits the BDNF-induced increase of Arc expression. Given that Abeta oligomers are likely to be involved in the synaptic dysfunction and cognitive impairment observed in amyloid depositing mouse models, we hypothesize that inhibition of Arc induction by BDNF contributes to the synaptic and memory deficits at early stages of AD.  相似文献   

17.
Alterations in synaptic protein stoichiometry may contribute to neocortical synaptic dysfunction in Alzheimer disease (AD). Whether perturbations in synaptic protein expression occur during the earliest stages of cognitive decline remain unclear. We examined protein levels of synaptophysin (SYP), synaptotagmin (SYT), and drebrin (DRB) in 5 neocortical regions (anterior cingulate, superior frontal, superior temporal, inferior parietal, and visual) of people clinically diagnosed with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD, or severe AD. Normalized SYP levels were decreased approximately 35% in the superior temporal and inferior parietal cortex in severe AD compared with NCI. SYT levels were unchanged across clinical diagnosis in the cortical regions. Levels of DRB, a dendritic spine plasticity marker, were reduced approximately 40% to 60% in all cortical regions in AD compared with NCI. DRB protein was also reduced approximately 35% in the superior temporal cortex of MCI subjects, and DRB and SYP levels in the superior temporal cortex correlated with Mini-Mental State Examination and Braak scores. In contrast, DRB levels in the superior frontal cortex increased approximately 30% in MCI subjects. The differential changes in DRB expression in the frontal and temporal cortex in MCI suggest a disparity of dendritic plasticity within these regions that may contribute to the early impairment of temporal cortical functions subserving memory and language compared with the relative preservation of frontal cortical executive function during the initial stages of cognitive decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号