首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ginsenosides have a variety of pharmacological activities, including immunomodulatory, antitumor and anti-inflammatory activities. However, the effect of Rk3 on ulcerative colitis has rarely been reported. This study evaluated the effect of Rk3 on DSS-induced ulcerative colitis and preliminarily explored the anti-inflammatory mechanisms. Rk3 administration significantly attenuated the weight loss, increased DAI scores, colonic shortening, and increased MPO and iNOS activities caused by DSS in mice. Histological improvement was apparent, tight junctions in the colon were restored, and the levels of short-chain fatty acids (acetic acid, butyric acid and isovaleric acid) were increased. In addition, Rk3 reduced the expression of proinflammatory factors (TNF-α, IL-1β and IL-6), NLRP3, ASC, and Caspase-1, indicating blockade of the NLRP3 inflammasome pathway. These results show that Rk3 can improve DSS-induced ulcerative colitis by protecting intestinal barrier function and inhibiting NLRP3 inflammasome expression, indicating that Rk3 could be used as a potential drug for treating ulcerative colitis.  相似文献   

2.
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease with high risks for colorectal cancer and extremely affect people's health. Secoisolariciresinol diglucoside (SDG), a major component of lignans, exerts anti-inflammatory effects against digestive system diseases through a multi-target mechanism. However, the effect of SDG on IBD is not clear. In the present study, we aimed to investigate the effects of SDG on IBD and elucidate the underlying mechanism. The Dextran Sulfate Sodium Salt (DSS)-induced colitis model and lipopolysaccharide (LPS) stimulated RAW264.7 mouse macrophages cellular inflammation model were established. Morphological and pathological changes in colitis tissue in mice were observed by HE staining. Macrophage infiltration was detected by flow cytometry. The levels of nucleotide oligomerization domain-like receptor protein 1 (NLRP1) inflammasome complexes, nuclear factor-kappa B (NF-κB) and inflammatory cytokines were determined using quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The results showed that SDG significantly attenuated the pathological severity and the number of macrophage infiltration of colitis in mice. Besides, SDG decreased the levels of inflammatory cytokines (IL-1β, IL-18 and TNF-α) and inhibited the activation of the NLRP1 inflammasome in DSS-induced colitis mice and RAW264.7 mouse macrophages. Moreover, the inhibitory effect of SDG was partly dependent on the disruption of NF-κB activation. Our results indicated that SDG relieves colitis by inhibiting NLRP1 inflammasome, and partly dependent on the disruption of NF-κB activation. Therefore, SDG may be a potential treatment option for IBD.  相似文献   

3.
4.
BackgroundIschaemic stroke is a lethal cerebrovascular disease that occurs worldwide. Astilbin is a natural flavonoid compound with various physiological activities. The purpose of this study was to investigate the neuroprotective effects of Astilbin after cerebral ischaemia reperfusion (I/R) injury.MethodsThe oxygen and glucose deprivation (OGD) model was used to simulate cerebral I/R injury in vitro. Cell viability was measured via CCK-8 and LDH release assays. Cell apoptosis was measured via Hoechst 33258 staining and flow cytometry assays. ROS was detected via flow cytometry assay. The protein expression levels were determined by western blotting. The middle cerebral artery occlusion (MCAO) model was used to simulate cerebral I/R injury in vivo. Cerebral ischaemic volume was measured by TTC staining. The Zea-Longa score, rota-rod test, and foot-fault test were used to evaluate behavioural changes and neurological deficits in rats.ResultsAstilbin significantly enhanced cell viability and decreased LDH release after OGD treatment in vitro. Astilbin effectively curbed cell apoptosis induced by OGD via inhibiting the activation of caspase-3, decreasing the ratio of Bax/Bcl-2 and decreasing FADD. Astilbin also inhibited OGD-induced inflammation by suppressing ROS-NLRP3 inflammasome axis activation. Further results revealed that Astilbin could suppress the MAPK pathway and activate the PI3K/AKT pathway. Finally, Astilbin significantly reduced the cerebral infarction volume and relieved neurological deficits in rats in vivo.ConclusionAstilbin could defend against cerebral I/R injury by inhibiting apoptosis and inflammation via suppressing the MAPK pathway and activating the AKT pathway.  相似文献   

5.
Platelets have been proved to exacerbate influenza infection and its complications. Inhibition of platelet activation may be a feasible method for preventing severe infection and secondary acute lung injury (ALI). Isofraxidin (IFD) is a natural coumarin isolated from the plants Sarcandra glabra and Siberian ginseng, and exerts anticancer, antioxidant and antiinflammatory effects. In the present study, we examined the therapeutic effects of IFD in ADP- or arachidonic acid (AA)-induced platelet aggregation model and in influenza A virus (IAV)-induced ALI mouse model. The results showed that IFD significantly inhibited platelet aggregation induced by ADP and AA in vitro in a concentration-dependent manner as well as the release of soluble P-selectin and platelet factor 4. Moreover, IFD significantly relieved IAV-induced lung inflammation, reduced the expressions of platelet activation biomarkers (P-selectin and CD61), decreased the serum levels of TNF-α, IL-1β, IL-6 and MIP-2, suppressed peripheral platelet aggregation and prolonged the survival time of infected mice. The western blotting results also demonstrated that IFD reduced the phosphorylation levels of PI3K, AKT and p38 in the activated platelets stimulated by ADP and IAV infection. But IFD did not have any effects on IAV replication. It indicated that IFD ameliorated IAV-induced severe lung damage and lethal infection by suppressing platelet aggregation via regulating PI3K/AKT and MAPK pathways.  相似文献   

6.
《药学学报(英文版)》2021,11(9):2880-2899
Aberrant activation of NLRP3 inflammasome in colonic macrophages strongly associates with the occurrence and progression of ulcerative colitis. Although targeting NLRP3 inflammasome has been considered to be a potential therapy, the underlying mechanism through which pathway the intestinal inflammation is modulated remains controversial. By focusing on the flavonoid lonicerin, one of the most abundant constituents existed in a long historical anti-inflammatory and anti-infectious herb Lonicera japonica Thunb., here we report its therapeutic effect on intestinal inflammation by binding directly to enhancer of zeste homolog 2 (EZH2) histone methyltransferase. EZH2-mediated modification of H3K27me3 promotes the expression of autophagy-related protein 5, which in turn leads to enhanced autophagy and accelerates autolysosome-mediated NLRP3 degradation. Mutations of EZH2 residues (His129 and Arg685) indicated by the dynamic simulation study have found to greatly diminish the protective effect of lonicerin. More importantly, in vivo studies verify that lonicerin dose-dependently disrupts the NLRP3–ASC–pro-caspase-1 complex assembly and alleviates colitis, which is compromised by administration of EZH2 overexpression plasmid. Thus, these findings together put forth the stage for further considering lonicerin as an anti-inflammatory epigenetic agent and suggesting EZH2/ATG5/NLRP3 axis may serve as a novel strategy to prevent ulcerative colitis as well as other inflammatory diseases.  相似文献   

7.
Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.  相似文献   

8.
Mastitis is one of the most common diseases among dairy cows. There is still much debate worldwide as to whether antibiotic therapy should be given to dairy cows, or if natural products should be taken as a substitute for antibacterial therapy. As the antibiotic treatment leads to the bacterial resistance and drug residue in milk, introducing natural products for mastitis is becoming a trend. This study investigates the mechanisms of the protective effects of the natural product gambogic acid (GA) in lipopolysaccharide (LPS)-induced mastitis. For in vitro treatments, it was found that GA reduced IL-6, TNF-α, and IL-1β levels by inhibiting the phosphorylation of proteins in the nuclear factor κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway. GA also maintained a stable membrane mitochondrial potential and inhibited the overproduction of reactive oxygen species, which protected the cells from apoptosis. On the other hand, in vivo treatments with GA were found to reduce pathological symptoms markedly, and protected the blood-milk barrier from damage induced by LPS. The results demonstrate that GA plays a vital role in suppressing inflammation, alleviating the apoptosis effect, and protecting the blood-milk barrier in mastitis induced by LPS. Thus, these results suggest that the natural product GA plays a potential role in mastitis treatment.  相似文献   

9.
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) playing crucial roles in sepsis-induced diseases, including myocardial inflammation. Nevertheless, the expression pattern and role of miR-215-5p in myocardial inflammation are still un-investigated up to now. The purpose of our study is to further inquire the effect of miR-215-5p on lipopolysaccharide (LPS)-activated inflammation injury in H9c2 cells and the possibly associated mechanisms. First of all, LPS-induced H9c2 cells models were constructed and affirmed via detection of pro-inflammatory factors, the viability and apoptosis. MiR-215-5p was overtly down-regulated in LPS-treated H9c2 cells and miR-215-5p overexpression could suppress the inflammation injury. LRRFIP1 was proved to be the target gene of miR-215-5p and meanwhile, miR-215-5p also targeted ILF3 that experimented to bind to and stabilize LRRFIP1. Final rescue assays confirmed that the overexpression of LRRFIP1 or ILF3 rescued the repressive effect of miR-215-5p up-regulation on the inflammation injury in septic H9c2. Totally, miR-215-5p exerted protective function in the inflammation injury in septic H9c2 via targeting ILF3 and LRRFIP1, suggesting an additional treatment method for sepsis-activated myocardial inflammation.  相似文献   

10.
The neuroinflammatory response induced by microglia plays a vital role in causing secondary brain damage after traumatic brain injury (TBI). Previous studies have found that the improved regulation of activated microglia could reduce neurological damage post-TBI. Phillyrin (Phi) is one of the main active ingredients extracted from the fruits of the medicinal plant Forsythia suspensa (Thunb.) with anti-inflammatory effects. Our study attempted to investigate the effects of phillyrin on microglial activation and neuron damage after TBI. The TBI model was applied to induce brain injury in mice, and neurological scores, brain water content, hematoxylin and eosin staining and Nissl staining were employed to determine the neuroprotective effects of phillyrin. Immunofluorescent staining and western blot analysis were used to detect nuclear factor-kappa B (NF-κB) and peroxisome proliferator–activated receptor gamma (PPARγ) expression and nuclear translocation, and the inflammation-related proteins and mRNAs were assessed by western blot analysis and quantitative real-time PCR. The results revealed that phillyrin not only inhibited the proinflammatory response induced by activated microglia but also attenuated neurological impairment and brain edema in vivo in a mouse TBI model. Additionally, phillyrin suppressed the phosphorylation of NF-κB in microglia after TBI insult. These effects of phillyrin were mostly abolished by the antagonist of PPARγ. Our results reveal that phillyrin could prominently inhibit the inflammation of microglia via the PPARγ signaling pathway, thus leading to potential neuroprotective treatment after traumatic brain injury.  相似文献   

11.
12.
Urinary trypsin inhibitor (UTI), also known as ulinastatin, has been reported to protect multiple organs against inflammation- and/or injury-induced dysfunction. In the present study, we aimed to investigate the immunomodulation effects of a recombinant human ulinastatin (urinary trypsin inhibitor, UTI) (rhUTI) on splenic dendritic cells (DCs) in cecal ligation and puncture (CLP)-induced septic mice. CLP mice were treated with rhUTI intramuscularly at 0, 12, and 24 h after procedure. Splenic CD11c+ DCs were isolated and accessed with flow cytometry for apoptotic or phenotypic analysis. Protein markers and cytokines were determined with Western blotting or ELISA. Treatment with rhUTI could markedly upregulate levels of costimulatory molecules (CD80, CD86) and MHC-II on surface of the splenic DC in CLP mice. The apoptotic rate of splenic DCs was decreased in CLP mice after rhUTI treatment. The survival rate of septic mice was increased after treatment with rhUTI. In addition, protein level of markers in endoplasmic reticulum stress (ERS)-related apoptotic pathways (including GRP78, caspase-12, and CHOP) were obviously down-regulated in the rhUTI-treated group when compared with the CLP group. These results indicate that rhUTI protects CLP-induced sepsis in mice by improving immune response of splenic DCs and inhibiting the excessive ERS-mediated apoptosis.  相似文献   

13.
Microglial inflammation induced by ischemic stroke aggravates brain damage. MicroRNAs (miRNAs) have emerged as pivotal regulators in ischemic stroke-induced inflammation in microglial cells. miR-665-3p has been reported as a critical inflammation-associated miRNA. However, whether miR-665-3p participates in regulating microglial inflammation during ischemic stroke is underdetermined. This study investigated the potential role of miR-665-3p in stroke-induced inflammation in microglial cells using a cellular model of oxygen-glucose deprivation (OGD)-stimulated microglial cells in vitro. We found that miR-665-3p expression was decreased in microglial cells exposed to OGD treatment. Functional experiments demonstrated that the overexpression of miR-665-3p attenuated OGD-induced apoptosis and inflammation in microglial cells. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-665-3p. TRIM8 expression was induced by OGD treatment in microglial cells and the knockdown of TRIM8 protected microglial cells from OGD -induced cytotoxicity and inflammation. Moreover, TRIM8 knockdown or miR-665-3p overexpression blocked OGD-induced activation of nuclear factor (NF)-κB signaling in microglial cells. In addition, TRIM8 overexpression partially reversed the miR-665-3p overexpression-mediated inhibitory effect on OGD-induced inflammation in microglial cells. Taken together, these results indicate that miR-665-3p up-regulation protects microglial cells from OGD-induced apoptosis and inflammatory response by targeting TRIM8 to inhibit NF-κB signaling.  相似文献   

14.
15.
《药学学报(英文版)》2022,12(5):2239-2251
The potential medicinal value of Ma bamboo (Dendrocalamus latiflorus), one of the most popular and economically important bamboo species in China, has been underestimated. In the present study, we found that D. latiflorus leaf extract (DLE) reduced fasting blood glucose levels, body weight, and low-density lipoprotein cholesterol with low liver toxicity in db/db mice. In addition, gene expression profiling was performed and pathway enrichment analysis showed that DLE affected metabolic pathways. Importantly, DLE activated the AKT signaling pathway and reduced glucose production by downregulating glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1) expression. Moreover, network pharmacology analysis identified rutin as an active component in DLE through targeting insulin growth factor 1 receptor (IGF1R), an upstream signaling transducer of AKT. Due to its hypoglycemic effects and low toxicity, DLE may be considered an adjuvant treatment option for type 2 diabetes patients.  相似文献   

16.
Joint inflammation is a key player in the pathogenesis of osteoarthritis (OA). Imperatorin, a plant-derived small molecule has been reported to have anti-inflammatory properties; however, its effect on chondrocytes is not known. Here, we investigated the effects of Imperatorin on interleukin-1β (IL-1β) induced expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in primary human OA chondrocytes and cartilage explants culture under pathological conditions and explored the associated signaling pathways. We pretreated chondrocytes or explants with Imperatorin (50 μM) followed by IL-1β (1 ng/ml), and the culture supernatant was used to determine the levels of nitrite production by Griess assay and chondrocytes were harvested to prepare cell lysate or RNA for gene expression analysis of iNOS by Western blot or qPCR and in explants by immunohistochemistry (IHC). Pretreatment of primary chondrocytes and cartilage explants with Imperatorin suppressed IL-1β induced expression of iNOS and NO production. Imperatorin blocked the IL-1β-induced phosphorylation of ERK-MAPK/AP1 signaling pathway to suppress iNOS expression. The role of ERK in the regulation of iNOS expression was verified by using ERK inhibitor. Interestingly, we also found that Imperatorin binds to iNOS protein and inhibits its activity in vitro. Our data demonstrated that Imperatorin possess strong anti-inflammatory activity and may be developed as a therapeutic agent for the management of OA.  相似文献   

17.
Nitrogen-containing bisphosphonates, such as alendronate, have been widely used to treat osteoporosis because they may target multiple signals in the mevalonate cascade. The present study evaluated the therapeutic effects of alendronate on experimental autoimmune encephalomyelitis (EAE), which is a prototypical autoimmune disease model. EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide. The mice were checked daily for clinical symptoms, such as paralysis, and the levels of inflammatory cytokines were analyzed using ELISA, western blot analyses, and immunohistochemistry. The daily oral administration of alendronate to EAE-induced mice significantly reduced the severity of paralysis and lowered T cell proliferation. Additionally, histopathological examinations confirmed that alendronate mitigated inflammation in the spinal cord after EAE induction, suppressed the infiltration of CD68-positive inflammatory cells, and reduced the production of various pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, as well as inducible nitric oxide synthase (iNOS). Furthermore, the alendronate-treated group exhibited a decrease in the number of iNOS-positive inflammatory cells compared to the vehicle-treated group. Taken together, the present results suggest that alendronate alleviated neuro-inflammation in the spinal cords of EAE-induced mice, which is an animal model of multiple sclerosis, possibly by inhibiting the downstream effects of the mevalonate cascade.  相似文献   

18.
《药学学报(英文版)》2022,12(3):1305-1321
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.  相似文献   

19.
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.  相似文献   

20.
Increasing evidence suggests that infection promotes the initiation and progression of prostate cancer. This study investigated the effects of lipopolysaccharide (LPS), a major component of Gram-negative bacilli, on proliferation, migration and invasion of prostate cancer cells and the protective effects of 1α,25(OH)2D3 (calcitriol). PC-3 and DU145 cells were stimulated with LPS (2.0 μg/mL) in the presence or absence of 1α,25(OH)2D3 (100 nM). Our results shown that 1α,25(OH)2D3 reduced the proportion of S phase cells in LPS-stimulated PC-3 and DU145 cells, and down-regulated the nuclear protein levels of Cyclin D1 and PCNA in LPS-stimulated PC-3 cells. In addition, 1α,25(OH)2D3 inhibited migration and invasion, as determined by wound healing and transwell assay, in LPS-stimulated PC-3 and DU145 cells. Of interest, we observed that 1α,25(OH)2D3 inhibits NF-κB activation and subsequent synthesis and secretion of IL-6 and IL-8 by promoting VDR and NF-κB p65 interaction. Surprisingly, 1α,25(OH)2D3 blocks nuclear translocation of pSTAT3 by promoting physical interaction between VDR and pSTAT3 (Tyr705) in LPS-stimulated PC-3 and DU145 cells. These results suggest that 1α,25(OH)2D3 inhibits LPS-induced proliferation, migration and invasion in prostate cancer cells by directly and indirectly blocking STAT3 signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号