首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Eye movements reflect not only an important output of various neural control systems, but also often reflect cognitive processing. For example, saccades are frequently used as a behavioural index of attentional processing. A second important eye movement type, smooth pursuit (SP), has received much less attention in this regard. These two types of eye movement were classically thought of as being separate, but recent results have suggested a closer linkage of their control mechanisms and perhaps their interactions with cognitive processes. Prior information, in the form of cues, alters saccade latency leading to characteristic cueing effects. When the period between the appearance of the cue and the appearance of the saccade target is sufficiently long, the latency of saccades to targets appearing at cued locations is increased. This "inhibition of return" is enhanced by a second type of stimulus manipulation, the early removal of the fixation target a few hundred milliseconds before the target appears (the gap paradigm). In the current experiments, the effect of cues, and interactions between cues and long gaps were investigated. In the main pursuit experiment, and in a separate saccade experiment, subjects were presented with interleaved runs of tasks with and without long gaps (gap duration = 1 s), and with and without cues. In tasks without cues, SP latency was reduced by long gaps (mean reduction 8 ms); unexpectedly, saccade latency for non-cue tasks was increased by long gaps (mean increase 41 ms). In a control experiment with only non-cue tasks, in which SP and saccade gap and non-gap tasks were run together, SP latency was again reduced in gap tasks, while saccade latency was increased, but by much less than in the first experiment. Analysis of individual subjects' data showed that while gaps increased saccade latency in two subjects who had participated in the main experiment (in which cues and gaps had been combined), in two naive subjects long gaps did not affect saccade latency. In the main pursuit experiment, cues had both spatially specific and non-spatially specific (warning) effects on pursuit latency. In non-gap conditions, latency was greater when contralateral cues were presented 250 ms prior to the appearance of the pursuit target, compared to ipsilateral cues, a pattern of effect consistent with inhibition of return. However, this was reversed when cues appeared during a gap--contralateral cues increased while ipsilateral cues decreased latency. For saccades, as expected, in both gap and non-gap conditions, cue effects were consistent with inhibition of return (latency was lower with contralateral cues), and the inhibition of return effect was larger in gap, compared to non-gap conditions. The results suggest that, in appropriate contexts (or as a result of appropriate training), there are distinct inhibitory mechanisms that operate on saccades but not pursuit. What appears to be an inhibition of return effect on pursuit latency when static cues are presented in pursuit tasks, may be better understood as the product of a modulation of mechanisms active in pursuit initiation, perhaps related to motion processing. In contrast to some recent evidence suggesting a close anatomical and functional linkage between pursuit and saccade initiation, the results are consistent with the involvement of a wider range of mechanisms, or a greater degree of flexibility, in programming the initiation of these two oculomotor behaviours.  相似文献   

2.
The effect of ageing upon head movements during gaze shifts is unknown. We have investigated age-related changes in head and eye coordination in a group of healthy volunteers.

Horizontal head and eye movements were recorded in 53 subjects, aged between 20 and 83 years, during the performance of saccades, antisaccades, smooth pursuit and a reading task. The subjects were divided into three groups, young subjects (20–40 years), middle-aged subjects (41–60 years) and older subjects (over 60 years).

Logarithmic transformations of the head gain were significantly greater in the older subjects compared to the young subjects during the saccadic task (P=0.001), antisaccadic task (P=0.0004), smooth pursuit at 20°/s (P=0.001) and 40°/s (P=0.005), but not reading. For saccadic and antisaccadic tasks, the increase in transformed head gain was non-linear with significant differences between older and middle-aged subjects but not middle-aged and young subjects. Head movement tendencies were highly consistent for related tasks.

Head movement gain during gaze shifts significantly increases with age, which may contribute to dizziness and balance problems experienced by the elderly.  相似文献   


3.
Eye movement disorders after frontal eye field lesions in humans   总被引:10,自引:0,他引:10  
Eye movements were recorded electro-oculographically in three patients with a small ischemic lesion affecting the left frontal eye field (FEF) and in 12 control subjects. Reflexive visually guided saccades (gap and overlap tasks), antisaccades, predictive saccades, memory-guided saccades, smooth pursuit and optokinetic nystagmus (OKN) were studied in the three patients. Staircase saccades and double step saccades were also studied in one of the three patients. For both leftward and rightward saccades, latency in the overlap task (but not in the gap task) and that of correct antisaccades and of memory-guided saccades was significantly increased, compared with the results of controls. There was a significant decrease in the amplitude gain of all rightward saccades programmed using retinotopic coordinates (gap and overlap tasks, predictive and memory-guided saccades), whereas the amplitude gain of corresponding leftward saccades was preserved. Such an asymmetry between leftward and rightward saccades was significant. In the staircase paradigm as well as for the first saccade in the double step paradigm (with the use of retinotopic coordinates in both cases), the amplitude gain of rightward saccades was also significantly lower than that of leftward saccades. Moreover, in the double step paradigm, the amplitude gain of the first rightward saccade was significantly lower than that of the second rightward saccade (programmed using extraretinal signals), which was preserved. The percentage of errors in the antisaccade task did not differ significantly from that of normal subjects. In the predictive saccade paradigm, the percentage of predictive rightward saccades was significantly decreased. The left smooth pursuit gain for all tested velocities, the right smooth pursuit gain for higher velocities, and the left OKN gain were significantly decreased. The results show, for the first time in humans, that the FEF plays an important role in (1) the disengagement from central fixation, (2) the control of contralateral saccades programmed using retinotopic coordinates, (3) saccade prediction and (4) the control of smooth pursuit and OKN, mainly ipsilaterally. In contrast, the left FEF did not appear to be crucial for the control of the only type of saccades programmed using extraretinal signals studied here.  相似文献   

4.
We examined whether there are any adaptive effects on the pursuit initiation after a prolonged exposure to moving visual stimuli. The eye movements of six human subjects were recorded with the scleral search-coil technique or a Dual Purkinje Image Eye-tracker system. A random-dot image appeared on a CRT monitor and moved coherently in one direction (rightward or leftward) at 10 deg/s for 4 s, while the subject fixated on a stationary target (conditioning stimulus). The screen was blanked for 0.2 s, and then the target stepped to the right or left of the center and moved 10 deg/s leftward or rightward. We measured change in the eye position over the open-loop period of the pursuit initiation. When the pursuit target moved in the same direction as the preceding visual stimulus, a significant reduction in the initial tracking responses (55.9% decrease on average) was found. We then studied in detail the properties of the motion adaptation in pursuit initiation by varying the visual conditions systematically and obtained the following findings. When the subjects tracked the target that moved at 10 deg/s, the pursuit initiation was affected not only by the conditioning stimulus of the same speed as the target, but also by those of different speeds. Further, the conditioning stimulus moving at 10 deg/s affected the pursuit initiation not only when the target moved with the same speed but also when it moved at different speeds (more remarkable for slower speeds). The effect of conditioning stimuli on the pursuit initiation was larger when the duration of the conditioning period was longer. The effect of conditioning stimuli decayed as the duration of the blank period became longer. The findings from the present study are consistent with the properties of neurons in the middle temporal area of monkeys.  相似文献   

5.
The extent to which adults with dyslexia are characterized by concurrent smooth pursuit eye movement and phonological difficulties was investigated, as was the relationship between performance on these respective tasks and literacy skills. A total of 19 adults with dyslexia and 19 age- and IQ-matched controls undertook a comprehensive battery of psychometric, literacy, and phonological tests. Smooth pursuit initiation was measured quantitatively under both gap and nongap conditions. The results revealed that adults with dyslexia had longer smooth pursuit latencies; however, both groups showed a similar gap effect. Moreover, the group with dyslexia had poorer phonological skills than controls. The smooth pursuit impairments affected 37% of the group whereas the phonological difficulties—most notably phoneme deletion latency—were severe among participants with dyslexia, affecting 89% of the group. Phonological processing tasks, but not the smooth pursuit task, were strongly correlated with nonword- and word-decoding skills in the group with dyslexia. These results suggest a lower incidence of smooth pursuit problems than phonological difficulties in dyslexia, and that the latter tasks are more critical for word level decoding.  相似文献   

6.
The extent to which adults with dyslexia are characterized by concurrent smooth pursuit eye movement and phonological difficulties was investigated, as was the relationship between performance on these respective tasks and literacy skills. A total of 19 adults with dyslexia and 19 age- and IQ-matched controls undertook a comprehensive battery of psychometric, literacy, and phonological tests. Smooth pursuit initiation was measured quantitatively under both gap and nongap conditions. The results revealed that adults with dyslexia had longer smooth pursuit latencies; however, both groups showed a similar gap effect. Moreover, the group with dyslexia had poorer phonological skills than controls. The smooth pursuit impairments affected 37% of the group whereas the phonological difficulties-most notably phoneme deletion latency-were severe among participants with dyslexia, affecting 89% of the group. Phonological processing tasks, but not the smooth pursuit task, were strongly correlated with nonword- and word-decoding skills in the group with dyslexia. These results suggest a lower incidence of smooth pursuit problems than phonological difficulties in dyslexia, and that the latter tasks are more critical for word level decoding.  相似文献   

7.
To examine the effects of smooth-pursuit eye movements on the initiation of saccades, their latency was measured when subjects initially fixated or pursued a target. In half of the block of trials, the fixation or pursuit target was extinguished 200 ms before the saccade target was illuminated (gap trials). Reduction of the mean saccade latency in the gap trials (the “gap effect”) was evident even when the subjects were pursuing a moving target, consistent with previous observations. The effect of pursuit direction on saccade latency was also examined. Saccades in the same direction as the preceding pursuit (forward saccades) had shorter latencies than those in the opposite direction (backward saccades). This asymmetry was observed in both the gap and nongap trials. Although the forward-backward asymmetry was much smaller than the “gap effect”, it was statistically significant in six of eight cases. These results suggest that the preparation of saccades is affected by smooth-pursuit eye movements. Received: 2 June 1997 / Accepted: 6 November 1997  相似文献   

8.
—Relationships between physiological responses and slowed reaction time (RT) among elderly subjects were tested in 48 healthy young, middle-aged, and elderly men (mean ages 24, 45, and 71 years) using signaled simple and choice RT tasks. There were age reductions in P3 amplitude and heart rate (HR) deceleration, but no effects of age on P3 latency. Sustained potential (SP or CNV) amplitude paradoxically increased with age, possibly indicating weaker inhibitory function. P3 amplitude, SP amplitude, and HR deceleration were most strongly correlated with RT among younger subjects, but SP amplitude was correlated with RT in the elderly group during the choice task. HR deceleration shared a small amount of variance with SP amplitude and RT in the young group. There was no HR-SP-RT relationship in the older groups. Choice-simple task differences in P3 amplitude and RT were correlated in the young and elderly groups. The results suggest that HR, SP, and P3 responses may reflect physiological processes related to the slower RTs of healthy elderly subjects.  相似文献   

9.
Previous studies in monkeys have shown that pursuit training during orthogonal whole body rotation results in task-dependent, predictive pursuit eye movements. We examined whether pursuit neurons in the frontal eye fields (FEF) are involved in predictive pursuit induced by vestibular-pursuit training. Two monkeys were rotated horizontally at 20°/s for 0.5 s either rightward or leftward with random inter-trial intervals. This chair motion trajectory was synchronized with orthogonal target motion at 20°/s for 0.5 s either upward or downward. Monkeys were rewarded for pursuing the target. Vertical pursuit eye velocities and discharge of 23 vertical pursuit neurons to vertical target motion were compared before training and during the last 5 min of the 25–45 min training. The latencies of discharge modulation of 61% of the neurons (14/23) shortened after vestibular-pursuit training in association with a shortening of pursuit latency. However, their discharge modulation occurred after 100 ms following the onset of pursuit eye velocity. Only four neurons (4/23 = 17%) discharged before the eye movement onset. A significant change was not observed in eye velocity and FEF pursuit neuron discharge during pursuit alone after training without vestibular stimulation. Vestibular stimulation alone without a target after training induced no clear response. These results suggest that the adaptive change in response to pursuit prediction was induced by vestibular inputs in the presence of target pursuit. FEF pursuit neurons are unlikely to be involved in the initial stage of generating predictive eye movements. We suggest that they may participate in the maintenance of predictive pursuit.  相似文献   

10.
Blinks executed during eye movements affect kinetic eye movement parameters, e.g., peak velocity of saccades is decreased, their duration is increased, but their amplitude is not altered. This effect is mainly explained by the decreased activity of premotor neurons in the brainstem: omni-pause neurons (OPN) in the nucleus raphe interpositus. Previous studies examined the immediate effect of blinks directly on eye movements but not their effect when they are elicited several hundred milliseconds before the eye movements. In order to address this question we tested blinks elicited before the target onset of saccades and pursuit and compared the results to the gap effect: if a fixation light is extinguished for several hundred milliseconds, the reaction time (latency) for subsequent saccades or smooth pursuit eye movements is decreased. Monocular eye and lid movements were recorded in nine healthy subjects using the scleral search-coil system. Laser stimuli were front-projected onto a tangent screen in front of the subjects. Horizontal step-ramp smooth pursuit of 20 deg/s was elicited in one session, or 5 deg horizontal visually guided saccades in another experimental session. In one-third of the trials (smooth pursuit or saccades) the fixation light was extinguished for 200 ms before stimulus onset (gap condition), and in another third of the trials reflexive blinks were elicited by a short airpuff before the stimulus onset (blink condition). The last third of the trials served as controls (control condition). Stimulus direction and the three conditions were randomized for saccades and smooth pursuit separately. The latency of the step-ramp smooth pursuit in the blink condition was found to be decreased by 10 ms, which was less than in the gap condition (38 ms). However, the initial acceleration and steady-state velocity of smooth pursuit did not differ in the three conditions. In contrast, the latency of the saccades in the gap condition was decreased by 39 ms, but not in the blink condition. Saccade amplitude, peak velocity, and duration were not different in the three conditions. There was also no difference in blink amplitude and duration of pupil occlusion in the blink condition, neither in saccades nor in smooth pursuit. The latency reduction of smooth pursuit, but not of saccades, may neither be explained by the brief pupil occlusion nor by visual suppression, warning signals, or the startle response. Whether the effects are caused by the influence of blinks on OPNs or other premotor structures remains to be tested.  相似文献   

11.
Periarcuate frontal cortex is involved in the control of smooth pursuit eye movements, but its role remains unclear. To better understand the control of pursuit by the "frontal pursuit area" (FPA), we applied electrical microstimulation when the monkeys were performing a variety of oculomotor tasks. In agreement with previous studies, electrical stimulation consisting of a train of 50-microA pulses at 333 Hz during fixation of a stationary target elicited smooth eye movements with a short latency (approximately 26 ms). The size of the elicited smooth eye movements was enhanced when the stimulation pulses were delivered during the maintenance of pursuit. The enhancement increased as a function of ongoing pursuit speed and was greater during pursuit in the same versus opposite direction of the eye movements evoked at a site. If stimulation was delivered during pursuit in eight different directions, the elicited eye velocity was fit best by a model incorporating two stimulation effects: a directional signal that drives eye velocity and an increase in the gain of ongoing pursuit eye speed in all directions. Separate experiments tested the effect of stimulation on the response to specific image motions. Stimulation consisted of a train of pulses at 100 or 200 Hz delivered during fixation so that only small smooth eye movements were elicited. If the stationary target was perturbed briefly during microstimulation, normally weak eye movement responses showed strong enhancement. If delivered at the initiation of pursuit, the same microstimulation caused enhancement of the presaccadic initiation of pursuit for steps of target velocity that moved the target either away from the position of fixation or in the direction of the eye movement caused by stimulation at the site. Stimulation in the FPA increased the latency of saccades to stationary or moving targets. Our results show that the FPA has two kinds of effects on the pursuit system. One drives smooth eye velocity in a fixed direction and is subject to on-line gain control by ongoing pursuit. The other causes enhancement of both the speed of ongoing pursuit and the responses to visual motion in a way that is not strongly selective for the direction of pursuit. Enhancement may operate either at a single site or at multiple sites. We conclude that the FPA plays an important role in on-line gain control for pursuit as well as possibly delivering commands for the direction and speed of smooth eye motion.  相似文献   

12.
Data from previous human and primate studies on saccadic and smooth pursuit eye movements suggest that there are shared internal inputs (for example, perception, attention, expectation, and memory) for the initiation of the two types of movements. Additional reports examining the effect of preparation time on movement responses have shown that when ample time is allowed subjects usually generate long-latency “reactive” responses. When the time allowed to prepare a movement is short, however, subjects respond with reduced latency and often anticipate the stimulus (“predictive” response). Based on these findings, we believe that the shared internal inputs at early stages of movement preparation may result in saccade and pursuit eye movements demonstrating the same dependence on preparation time despite acting through different neural pathways further downstream. Previously we demonstrated a behavioral “phase transition” when normal subjects tracked alternating targets with saccades. When preparation time was long (low-frequency pacing) subjects made reactive saccades (latency ~180 ms). As preparation time monotonically decreased (pacing frequency increased), there was an abrupt transition to a predictive response (latency <100 ms). In the present study we show that a similar transition exists in smooth pursuit tracking and that the point of transition between the two behaviors is the same for both systems. In other words, the same behavior (reactive versus predictive) is selected when pursuit and saccade tracking are tested under the same time constraints. This provides further evidence that the two types of movements are different motor outcomes of a common decision process.  相似文献   

13.
Gaze shifts vary in the extent of eye and head contribution; a large amplitude and/or an eccentric ocular orbital starting position alter the participation of head movement in the shift. The interval between eye onset and head onset determines compensatory counterrolling before and after the shift and the extent of vestibular ocular reflex reduction during the shift. The latency of eye saccades in the head-fixed condition was measured with respect to target amplitude and orbital position in order to establish base-line operations of these two variables as they apply to the headfree condition. Eye movements were measured during single-step saccades in nine young adult humans. The target step, hereafter called a jump, started from three possible fixation lights; e.g., rightward saccades started from the midline (0°) or from -20 or -40° left of the midline, with a maximum amplitude of 80°. The latency of saccades starting from the primary position increased with jump amplitude (amplitude-latency relation). When the eye started eccentrically, the latency was decreased (orbital position-latency relation), with the largest jump amplitudes most affected. These changes can be related to active eye-head coordination. Thus, with a leftward maximal orbital eccentricity, compensatory eye rotation would be impossible with a rightward head movement; however, incorporating the orbital position-latency relation, the forward ocular saccade is expedited by 90 ms. Conversely, with a primary starting position, the ocular component of an 80° gaze saccade could be slowed 125 ms by incorporating the amplitude-latency relation, thus facilitating a head contribution to the gaze shift. The orbital position and amplitude-latency relations were prominent in those subjects with habitually large head contributions to the gaze shift and minimal in individuals with typically small head contributions.  相似文献   

14.
In order to extract information from the visual world, it is necessary to bring the images of objects of interest to rest on the high acuity part of the retina, the fovea. Primates, including humans, use two types of eye movement, saccades and smooth pursuit, to accomplish this. While classically conceived of as being separate and distinct, various lines of evidence indicate a close linkage between these two eye movement systems. They are often investigated at a behavioural level by presenting subjects with single targets to saccade or to track. We investigated the effect of presenting a single stationary distractor at various positions in the visual field at the same time as a moving target which subjects were instructed to track. We found that while a stationary distractor presented in the contralateral visual field and part of the ipsilateral visual field increased pursuit latency in an eccentricity dependent manner, a distractor presented in the ipsilateral visual field, within 45° of the axis along which the pursuit target moved, had no effect on latency. We found no evidence that within this region distractors modified eye velocity during the early part of the pursuit response. This spatial pattern of the effect of a stationary distractor on pursuit latency is very similar to the effect of distractors on saccade latency. Our results provide behavioural evidence supporting the hypothesis that the processes that determine when an eye movement is made are linked, but that those determining the form of that eye movement are substantially independent.  相似文献   

15.
An eye position signal scales the amplitude of compensatory eye velocity in the translational vestibulo-ocular reflex (TVOR). To investigate the origin of such a modulatory signal, we studied the kinematics of the fore-aft TVOR as rhesus monkeys pursued a horizontally moving target at velocities between 0.5 and 30 degrees /s. We found that the "V-shaped" curve of the fore-aft TVOR amplitude as a function of eye position was shifted opposite to the direction of pursuit eye movement. As a result, the tip of the V-shaped curve that occurred close to zero eye position during steady-state fixation was shifted to the right during leftward pursuit and to the left during rightward pursuit eye movements. The faster the pursuit velocity the larger the observed shift. These results suggest that the scaling of the TVOR can precede actual eye position changes by several tens of milliseconds, which averaged 169 +/- 87 ms in three rhesus monkeys. Thus, central motor commands, rather than low-level efference copy or proprioceptive information, may be the signals scaling TVOR amplitude.  相似文献   

16.
Smooth eye pursuit is believed to involve the integration of an extraretinal signal formed by an internal representation of the moving target and a retinal signal using the visual feedback to evaluate performance. A variation of the smooth eye pursuit paradigm (in which the moving target is occluded for a short period of time and subjects are asked to continue tracking) designed to isolate the predictive processes that drive the extraretinal signal was performed by 1,187 young men. The latency to the onset of change in pursuit speed, the time of decelerating eye-movement speed and the steady state residual gain were measured for each subject and correlated with measures of other oculomotor (closed-loop smooth eye pursuit, saccade, antisaccade, active fixation) and cognitive tasks (measuring sustained attention and working memory). Deceleration time increased with increasing age, while education, general IQ and cognitive variables had no effect on predictive pursuit performance. Predictive pursuit indices were correlated to those of closed-loop pursuit and antisaccade performance, but these correlations were very weak except for a positive correlation of residual gain to saccade frequency in the fixation task with distracters. This correlation suggested that the maintenance of active fixation is negatively correlated with the ability to maintain predictive pursuit speed. In conclusion, this study presents predictive pursuit performance in a large sample of apparently healthy individuals. Surprisingly, predictive pursuit was weakly if at all related to closed-loop pursuit or other oculomotor and cognitive tasks, supporting the usefulness of this phenotype in the study of frontal lobe integrity in normal and patient populations.  相似文献   

17.
18.
A sample of 676 healthy young males performed visually guided saccades and antisaccades and completed the Porac-Coren questionnaire measuring lateral preferences. There was no difference in mean latency between rightward versus leftward saccades or for saccades executed in the left versus right hemispace. There was also no right/left asymmetry for individuals with left or right dominance as assessed by the lateral preferences questionnaire. The same results were observed for the latency of antisaccades and for the error rate in the antisaccade task. Finally, we did not confirm any substantial subpopulation of individuals with idiosyncratic left/right latency asymmetries that persisted both in the saccade and antisaccade task. These results suggest that neither latency nor antisaccade error rate are good indicators of lateral preferences in these tasks. Other oculomotor tasks might be more sensitive to hemifield differences, or cerebral hemispheric asymmetry is not present at the level of cortical organization of saccades and antisaccades.  相似文献   

19.
The appearance of a stationary but irrelevant cue triggers a smooth eye movement away from the position of the cue in monkeys that have been trained extensively to smoothly track the motion of moving targets while not making saccades to the stationary cue. We have analyzed the parameters that regulate the size of the cue-evoked smooth eye movement and examined whether presentation of the cue changes the initiation of pursuit for subsequent steps of target velocity. Cues evoked smooth eye movements in blocks of target motions that required smooth pursuit to moving targets, but evoked much smaller smooth eye movements in blocks that required saccades to stationary targets. The direction of the cue-evoked eye movement was always opposite to the position of the cue and did not depend on whether subsequent target motion was toward or away from the position of fixation. The latency of the cue-evoked smooth eye movement was near 100 ms and was slightly longer than the latency of pursuit for target motion away from the position of fixation. The size of the cue-evoked smooth eye movement was as large as 10 degrees /s and decreased as functions of the eccentricity of the cue and the illumination of the experimental room. To study the initiation of pursuit in the wake of the cues, we used bilateral cues at equal eccentricities to the right and left of the position of fixation. These evoked smaller eye velocities that were consistent with vector averaging of the responses to each cue. In the wake of bilateral cues, the initiation of pursuit was enhanced for target motion away from the position of fixation, but not for target motion toward the position of fixation. We suggest that the cue-evoked smooth eye movement is related to a previously postulated on-line gain control for pursuit, and that it is a side-effect of sudden activation of the gain-controlling element.  相似文献   

20.
We usually move both our eyes and our head when pursuing a high-speed moving object. However, the vestibulo-ocular reflex (VOR), evoked by head motion, seems to disturb smooth pursuit eye movement because the VOR stabilizes the gaze against head motion. To determine whether head motion is advantageous for pursuing a high-speed moving object, we examined dynamic visual acuity (DVA) for a high-speed (80°/s) rightward moving object with and without active linear rightward head motion (HM) at a maximum of 50 cm/s in nine healthy subjects. Furthermore, we analyzed eye and head movements to investigate the contribution of linear VOR (LVOR) and smooth eye movement under these conditions. In most subjects, active linear head motion improved DVA for a high-speed moving object. Subjects with higher DVA scores under HM had robust rightward gaze (eye + head) velocities (>60 cm/s), i.e., rightward smooth eye movements (>10°/s). With the head stationary (HS), faster smooth eye movements (>40°/s) were generated when the subjects pursued a high-speed moving object. They also showed anticipatory smooth eye movements under conditions HM and HS. However, the level of suppression of their LVOR abilities was equal to that of the others. These results suggest that the ability to generate anticipatory smooth pursuit eye movements for following a high-speed moving object against the LVOR is a determining factor for improvement of DVA under HM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号