首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area (VTA) respond to a wide category of salient stimuli. Activation of SN and VTA DA neurons, and consequent release of nigrostriatal and mesolimbic DA, modulates the processing of concurrent glutamate inputs to dorsal and ventral striatal target regions. According to the view described here, this occurs under conditions of unexpected environmental change regardless of whether that change is rewarding or aversive. Nigrostriatal and mesolimbic DA activity gates the input of sensory, motor, and incentive motivational (e.g. reward) signals to the striatum. In light of recent single-unit and brain imaging data, it is suggested that the striatal reward signals originate in the orbitofrontal cortex and basolateral amygdala (BLA), regions that project strongly to the striatum. A DA signal of salient unexpected event occurrence, from this framework, gates the throughput of the orbitofrontal glutamate reward input to the striatum just as it gates the throughput of corticostriatal sensory and motor signals needed for normal response execution. Processing of these incoming signals is enhanced when synaptic DA levels are high, because DA enhances the synaptic efficacy of strong concurrent glutamate inputs while reducing the efficacy of weak glutamate inputs. The impairments in motor performance and incentive motivational processes that follow from nigrostriatal and mesolimbic DA loss can be understood in terms of a single mechanism: abnormal processing of sensorimotor and incentive motivation-related glutamate input signals to the striatum.  相似文献   

2.
The striatal neuronal loss evident following cellular metabolic compromise may be dependent upon the presence of glutamate and dopamine within the striatum. In order to investigate the relative roles of corticostriatal and nigrostriatal projections in malonate-induced neuronal loss, the extent of toxicity was quantified in animals with cortical lesions to deplete the striatum of glutamate, nigrostriatal lesions to deplete the striatum of dopamine, or both. We found that malonate-induced striatal toxicity was significantly reduced following lesions of either the glutamatergic or dopaminergic afferents to the striatum. The extent of attenuation following the loss of both inputs within the same animal was similar to that seen following lesions of either alone. These data suggest that malonate-induced toxicity in the striatum depends upon the integrity of interactive influences from both glutamatergic and dopaminergic afferents.  相似文献   

3.
Two distinct forms of synaptic plasticity have been described at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Along with the massive glutamatergic inputs originating from the cortex, striatal neurons receive a myriad of other synaptic contacts arising from different sources. In particular, while the nigrostriatal pathway provides this brain area with dopamine (DA), intrinsic circuits are the main source of acetylcholine (ACh) and nitric oxide (NO). The three neurotransmitter systems interact with each other to determine whether corticostriatal LTP or LTD is triggered in response to repetitive synaptic stimulation. Two distinct subtypes of striatal interneurons produce ACh and NO in the striatum. These interneurons are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exert a feedforward control of the excitability of striatal projection neurons by ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse. The integrative action exerted by striatal projection neurons on the converging information arising from the cortex, nigral DA neurons, and from ACh- and NO-producing interneurons dictates the final output of the striatum to the other structures of the basal ganglia.  相似文献   

4.
Firing during sensorimotor exam was used to categorize single neurons in the lateral striatum of awake, unrestrained rats. Five rats received unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle to deplete striatal dopamine (DA; >98% depletion, postmortem assay). Three months after treatment, rats exhibited exaggerated rotational behavior induced by L-dihydroxyphenylalanine (L-DOPA) and contralateral sensory neglect. Electrode track "depth profiles" on the DA-depleted side showed fragmented clustering of neurons related to sensorimotor activity of single body parts (SBP neurons). Clusters were smaller than normal, and more SBP neurons were observed in isolation, outside of clusters. More body parts were represented per unit volume. No recovery in these measures was observed up to one year post lesion. Overall distributions of neurons related to different body parts were not altered. The fragmentation of SBP clusters after DA depletion indicates that a percentage of striatal SBP neurons switched responsiveness from one body part to one or more different body parts. Because the specific firing that characterizes striatal SBP neurons is mediated by corticostriatal inputs (Liles and Updyke [1985] Brain Res. 339:245-255), the data indicate that DA depletion resulted in a reorganization of corticostriatal connections, perhaps via unmasking or sprouting of connections to adjacent clusters of striatal neurons. After reorganization, sensory activity in a localized body part activates striatal neurons that have switched to that body part. In turn, switched signals sent from basal ganglia to premotor and motor neurons, which likely retain their original connections, would create mismatches in these normally precise topographic connections. Switched signals could partially explain parkinsonian deficits in motor functions involving somatosensory guidance and their intractability to L-DOPA therapy-particularly if the switching involves sprouting.  相似文献   

5.
Early in development, the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed by growth cones, neuronal processes, and neuronal cell bodies. In rat striatum, PSA-NCAM expression becomes progressively restricted to pre- and postsynaptic membranes and is undetectable by postnatal day 25 (P25), i.e., after corticostriatal synaptogenesis. This study examined the effects of cortical lesions performed on P14, when the corticostriatal projection is already primarily unilateral and cortical inputs have not yet formed asymmetric synapses on striatal neurons. Rats were killed on P25, and PSA-NCAM expression was examined by immunoblotting and immunohistochemistry with light and electron microscopy. In contrast to the case in controls, PSA-NCAM expression was maintained in the striatum of lesioned pups. Ultrastructural studies showed that PSA-NCAM was present 1) in growth cone-like structures and neuronal processes and 2) in striatal neurons. Together with the presence of growth cones, the observation that the number of asymmetric synapses was unchanged in the denervated striatum suggests that axonal sprouting occurred in response to the lesion. This was confirmed by axonal labeling in the denervated striatum after injection of Fluoro-Ruby in the contralateral cortex. The data indicate that P14 cortical lesions affect PSA-NCAM expression in the developing striatum 1) by inducing a robust axonal plasticity resulting in the presence of immature presynaptic elements that contain PSA-NCAM and 2) by delaying the loss of PSA-NCAM expression in striatal neurons, suggesting that the lesion affects the time course of striatal maturation. J. Comp. Neurol. 389:289–308, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Organotypic cocultures of striatum, cortex, and ventral mesencephalon were used to study the anatomical and physiological development of striatal neurons in the presence or absence of cortical and nigral (SN/VTA) inputs. Striatum and cortex were dissected from prenatal (E18-E22) or early postnatal (P0-P2) rats, and SN/VTA was dissected from E14-15 fetuses; pieces were maintained up to 3 weeks in static slice culture. Triple cocultures containing SN/VTA exhibited rapid and robust dopamine (DA) innervation of the striatum in a patchy pattern, and homogeneous distribution within the cortical piece, regardless of the orientations of the three pieces. DA fibers within the striatal piece overlapped striatal patch neurons, marked by DARPP-32 immunoreactivity, in striatal cultures prepared from all age rats, but development most analogous to that seen in vivo was observed with the use of late prenatal (E20-E22) striatum. The patch/matrix organization was maintained in cultures prepared from late prenatal striatum in the presence of cortical and nigrostriatal DA afferents. In addition, a more complete transition to a patchy organization was observed in E18/19 striatal cultures in the presence of cortical and DA innervation. Electrophysiological recording demonstrated the presence of both spontaneous and cortically evoked activity in striatal medium spiny neurons; this activity was greatly influenced by the presence of DA innervation. These findings demonstrate the importance of afferent innervation in the maturation of striatal neurons in organotypic cultures.  相似文献   

7.
The patch-matrix organization of the striatum is defined by the selective expression of neuronal markers and a semisegregated pattern of afferents and efferents that develops before birth in all mammals. Differential projections from 'limbic' and 'somatomotor' cortices contribute to the selective circuitry of patch ("striosome") and matrix compartments. Organotypic cultures were used to determine the pattern of early corticostriatal innervation as a first step toward understanding the role of cortical innervation in the development of striatal patch-matrix organization. Perinatal striatum (E19-P4) was cocultured with the cortex obtained from same-age or different-age rats in the presence or absence of substantia nigra obtained from E14-15 fetuses. After 4-21 days in vitro, crystals of biocytin were placed directly onto the cortical piece to trace cortical projections into the striatal piece. Cortex obtained from fetuses (E19-22) or neonatal (P0-1) rats gave rise to a dense innervation of both prenatal and postnatal striatal slices; however, the pattern of biocytin-labeled fibers was found to be highly dependent on the age of the cortical tissue used. Cortex derived from rats between E20 and P1 gave rise to a heterogeneous distribution of fibers indicative of striatal patches when combined with striatal slices from same-age or younger (E18-19) fetuses. Cortex from E18-19 fetuses produced a homogeneous innervation even when cocultured with older striatal tissue in which the striatal patches were already present. The postnatal cortex (P2-P5) gave rise to little to no innervation of striatum of all ages. Similar findings were obtained with the use of either prelimbic or somatosensory cortex. In double- and triple-labeled cultures, the distribution of corticostriatal fibers overlapped substantially with patches of developing striatal neurons, as revealed by DARPP-32 immunocytochemistry. Dopaminergic innervation present when the substantia nigra was included in the cocultures also distributed preferentially to the developing patch compartment, but it did not substantially alter the pattern of corticostriatal innervation. These findings suggest that the cortex provides directive signals to the developing striatum rather than simply responding to the presence of patches that have already formed.  相似文献   

8.
Striatonigral and striatopallidal neurons form distinct populations of striatal projection neurons. Their discharge activity is imbalanced after dopaminergic degeneration in Parkinson's disease. Striatal projection neurons receive massive cortical excitatory inputs from bilateral intratelencephalic (IT) neurons projecting to both the ipsilateral and contralateral striatum and from collateral axons of ipsilateral neurons that send their main axon through the pyramidal tract (PT). Previous anatomical studies in rats suggested that IT and PT inputs preferentially excite striatonigral and striatopallidal neurons, respectively. Here we used electrophysiological criteria to identify them with antidromic stimulations. We show that the spontaneous discharge activity of IT neurons is depressed, whereas that of PT neurons is not affected in the rat cortex ipsilateral to 6-hydroxydopamine injection. However, our functional experiments do not support the hypothesis of a differential cortical input to striatal pathways. Firstly, although the conduction velocity of PT neurons is 4.6 times faster than that of IT neurons, identified striatopallidal and striatonigral neurons exhibit identical latencies of their spike responses to electrical stimulation of the ipsilateral cortex. Secondly, although PT neurons are ipsilateral, both striatal populations exhibit similar sensitivity to the stimulation of the ipsilateral and contralateral cortex. We suggest that IT neurons provide the main excitatory input to both striatal populations and that the corticostriatal PT input is weaker. Therefore, our functional data do not support our previous hypothesis that the deficit of IT neurons associated with the dopaminergic depletion might contribute to the striatal imbalance. This imbalance might rather result from intrinsic striatal mechanisms.  相似文献   

9.
Unilateral injections of the serotonin neurotoxin, 5,7-dihydroxytryptamine (DHT), at various points along the 5-HT pathway to the forebrain produce a turning syndrome associated with alterations of dopamine synthesis in the ipsilateral striatum. Unilateral injections of DHT into the SN produced an ipsilateral increase in striatal dopamine (DA) turnover and contralateral rotation in response to amphetamine or apomorphine. Injection of DHT into the MFB produced an ipsilateral decrease in striatal DA turnover and tyrosine hydroxylase (TOH) activity, and ipsilateral rotation in response to amphetamine or apomorphine. After the injection of DHT into the SN or MFB, there was a significant correlation between the rates of drug-induced rotation, the decrease in cortical 5-HT turnover, and the change in striatal DA turnover, suggesting that the unilateral change in DA turnover (and, presumably, the increased stimulation of DA receptors) is causally linked to turning. Injection of DHT into the zones of the striatum and GP richest in 5-HT terminals produced the same responses as the MFB-lesioned rats: ipsilateral rotation and a decrease in striatal TOH activity. Injection of DHT into the area of the striatum richest in DA terminals failed to produce rotation or a significant change in TOH activity. We suggest that 5-HT neurons from the raphe nuclei exert a tonic inhibition on the nigrostriatal pathway at the level of the SN through direct synapses on DA neurons, whereas their neostriatal terminals have an indirect effect on DA terminals, perhaps via interaction with cholinergic and GABA-ergic neurons.  相似文献   

10.
Dopamine (DA) affects GABA neuronal function in the striatum and together these neurotransmitters play a large role in locomotor function. We recently reported that unilateral striatal administration of GDNF, a growth factor that has neurotrophic effects on DA neurons and enhances DA release, bilaterally increased striatal neuron activity related to locomotion in aged rats. We hypothesized that the GDNF enhancement of DA function and resulting bilateral enhancement of striatal neuronal activity was due to prolonged bilateral changes in DA- and GABA-regulating proteins. Therefore in these studies we assessed dopamine- and GABA-regulating proteins in the striatum and substantia nigra (SN) of 24 month old Fischer 344 rats, 30 days after a single unilateral striatal delivery of GDNF. The nigrostriatal proteins investigated were the DA transporter (DAT), tyrosine hydroxylase (TH), and TH phosphorylation and were examined by blot-immunolabeling. The striatal GABA neuron-related proteins were examined by assay of the DA D1 receptor, DARPP-32, DARPP-32 Thr34 phosphorylation, and glutamic acid decarboxylase (GAD). Bilateral effects of GDNF on TH and DAT occurred only in the SN, as 30 μg GDNF increased ser19 phosphorylation, and 100 μg GDNF decreased DAT and TH protein levels. GDNF also produced bilateral changes in GAD protein in the striatum. A decrease in DARPP-32 occurred in the ipsilateral striatum, while increased D1 receptor and DARPP-32 phosphorylation occurred in the contralateral striatum. The 30 μg GDNF infusion into the lateral striatum was confined to the ipsilateral striatum and substantia nigra. Thus, long-lasting bilateral effects of GDNF on proteins regulating DA and GABA neuronal function likely alter physiological properties in neurons, some with bilateral projections, associated with locomotion. Enhanced nigrostriatal excitability and DA release by GDNF may trigger these bilateral effects.  相似文献   

11.
Previous studies in our laboratory have shown that cortical lesions induced by thermocoagulation of pial blood vessels, but not by acute aspiration, result in 1) the preservation of control levels of the growth-associated protein (GAP)-43 and 2) a prolonged increase in neurotransmitter gene expression in the denervated dorsolateral striatum. We have examined whether corticostriatal projections from the spared homotypic contralateral cortex contribute to these effects. Adult rats received either a thermocoagulatory or aspiration lesion of the cerebral cortex and, after 30 days, received an injection of the anterograde tracer, Fluoro-Ruby, in the contralateral homotypic cortex. Rats were killed 7 days later, and labeled fibers were examined with fluorescence microscopy in the ipsilateral and contralateral striata. Ipsilateral corticostriatal projections were detected in lesioned and unlesioned rats. Numerous labeled fibers were detected in the contralateral striatum of thermocoagulatory-lesioned but not aspiration-lesioned or control animals, suggesting that contralateral cortical neurons may undergo axonal sprouting in the denervated striatum following a thermocoagulatory lesion of the cortex. To determine whether contralateral corticostriatal fibers play a role in the changes in striatal gene expression induced by the thermocoagulatory lesions, the effects of aspiration lesions, as well as unilateral and bilateral thermocoagulatory lesions of the cortex were compared. Confirming previous results, striatal enkephalin mRNA levels were increased after a unilateral thermocoagulatory lesion. However, they were unchanged after aspiration or bilateral thermocoagulatory lesions, suggesting that sprouting or overactivity of contralateral corticostriatal input contributes to the increase seen after unilateral thermocoagulatory lesions. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Both the behavioral sensitization syndrome and the changes in the responsiveness of striatal neurons evoked by chronic cocaine exposure may be linked to enhanced neocortical activity, yet a direct demonstration of the effects of cortical stimulation on these parameters is lacking. We have found that repeated stimulation of the rat prelimbic cortex with picrotoxin (0.25 microg/0.25 microl, five injections on alternate days followed by 7-day withdrawal) contributed to increase c-Fos protein expression in the striosomes of the dorsolateral striatum, while producing the opposite effect in the matrix compartment, after a single exposure to cocaine (25 mg/kg). Moreover, rats exposed to cortical stimulation showed decreased locomotor activation but enhanced stereotypy following acute cocaine treatment. Thus, pulsatile stimulation of the prelimbic cortex facilitated modifications in striatal activity typically produced by chronic cocaine treatment and sensitized drug-naive animals to acute cocaine challenge. These results suggest that enhanced activation of the prelimbic cortex may contribute to the long-term adaptations induced by cocaine on neural activity and behavior.  相似文献   

13.
Experience-dependent changes in corticostriatal transmission efficacy are likely to support the role of the striatum in reinforcement-based motor learning. Whereas long-term depression at glutamatergic corticostriatal synapses has long been regarded as the normal form of striatal plasticity, recent work provides evidence that use-dependent potentiation can naturally occur at these connections through an increase in both synaptic efficacy and postsynaptic intrinsic excitability. By decreasing the weight of cortical inputs required to fire striatal output neurons, short-term and long-term potentiation at corticostriatal connections can jointly participate in the formation of sensorimotor links by which specific context-dependent patterns of cortical activity can engage selected motor programs.  相似文献   

14.
The striatum receives topographic cortical inputs with the limbic lobe terminating in the ventral striatum and sensorimotor cortical regions terminating in the dorsolateral striatum. The organization of striatonigral projections originating from these different striatal territories was examined in primate by using several anterograde tracers. The ventral striatum innervates a large area of the substantia nigra, including the medial pars reticulata and much of the pars compacta. Moreover, projections from separate areas of the ventral striatum overlap considerably in the substantia nigra. No mediolateral or rostrocaudal topographic order is apparent, and the area of the substantia nigra associated with the ventral striatum is extensive. In contrast, the sensorimotor-related striatum innervates a limited region of the ventrolateral substantia nigra. Similar to ventral striatonigral projections, projections originating from different areas of the sensorimotor-related striatum send converging inputs to the substantia nigra. Sensorimotor-related striatonigral projections avoid the region of the dopaminergic neurons in the dorsal pars compacta. Striatonigral projections from the sensorimotor-related and ventral striatum do not overlap in the substantia nigra. Examination of the outputs of discrete striatal loci indicates that the organization of striatonigral projections is more related to corticostriatal inputs than to a simple rostrocaudal, dorsoventral, or mediolateral tpography of the striatum. Striatal projections that originate from different striatal territories are distinct and nonoverlapping, thus supporting the concept of segregated striatonigral circuits. However, areas of the striatum that receive common cortical inputs send converging inputs to the substantia nigra. This suggests that the substantia nigra is also an important link for integrating information between functionally related (sub)circuits. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Dopamine D2-class receptors have been shown to control the excitability of striatal neurons in response to cortical activation. It has been unclear, however, whether such receptors could regulate the number of striatal neurons activated by cortical stimulation, and thus affect the population response of the striatum to its cortical inputs. We used Fos induction as a readout to measure the ensemble response of striatal neurons to localized stimulation of the frontal cortex and tested for the effects of D2-class dopamine receptor blockade on this response. In freely moving rats, we stimulated the frontal cortex by local epidural application of a dose of a GABAA receptor antagonist (picrotoxin) just threshold for inducing Fos in the striatum. We combined this treatment with D2-class dopamine receptor antagonist treatments at dose levels also just threshold for inducing Fos, using either (i) systemic haloperidol or (ii) intrastriatal (-)sulpiride. Both systemic and intrastriatal blockade of D2-class receptors sharply increased the numbers of striatal neurons exhibiting cortically evoked Fos induction. These findings suggest that local activation of intrastriatal D2-class dopamine receptors can regulate the number of striatal neurons responsive to cortical inputs, thus dynamically shaping the flow of information through the striatum.  相似文献   

16.
While rotational asymmetry is used as a characteristic behavioural sign of striatal dopamine (DA) loss in unilateral animal models of Parkinson's disease (PD), there is relatively little analysis of how other common behavioural deficits relate to nigrostriatal DA depletion. We analysed the relationships between several deficits induced by unilateral 6-OHDA lesions and striatal neurochemistry, as well as neuronal loss in the dopaminergic substantia nigra (SN). Behaviour was evaluated from before until 6 weeks after surgery and abnormalities appeared in body axis, head position and sensorimotor performance as well as apomorphine-induced rotation. As expected, rotational behaviour correlated with striatal DA loss and not with other striatal neurotransmitters measured. Similar observations were found for sensorimotor deficits ('disengage task'). Both deficits were observed in rats with >70% loss of TH+ nigral neurons and >80% loss of striatal DA. Additional postural abnormalities appeared with mean losses of 87% of nigral DA neurons and 97% striatal DA, consistent with observations in patients with advanced PD. The data show that the repertoire of behavioural abnormalities manifested by hemiparkinsonian rats relate directly to the degree of nigrostriatal DA loss and, therefore, mimic features of PD. Analysis of such behaviours are relevant for chronic therapeutic studies targeting PD.  相似文献   

17.
Dopaminergic control of synaptic plasticity in the dorsal striatum   总被引:9,自引:0,他引:9  
Cortical glutamatergic and nigral dopaminergic afferents impinge on projection spiny neurons of the striatum, providing the most significant inputs to this structure. Isolated activation of glutamate or dopamine (DA) receptors produces short-term effects on striatal neurons, whereas the combined stimulation of both glutamate and DA receptors is able to induce long-lasting modifications of synaptic excitability. Repetitive stimulation of corticostriatal fibres causes a massive release of both glutamate and DA in the striatum and, depending on the glutamate receptor subtype preferentially activated, produces either long-term depression (LTD) or long-term potentiation (LTP) of excitatory synaptic transmission. D1-like and D2-like DA receptors interact synergistically to allow LTD formation, while they operate in opposition during the induction phase of LTP. Corticostriatal synaptic plasticity is severely impaired after chronic DA denervation and requires the stimulation of DARPP-32, a small protein expressed in dopaminoceptive spiny neurons which acts as a potent inhibitor of protein phosphatase-1. In addition, the formation of LTD and LTP requires the activation of PKG and PKA, respectively, in striatal projection neurons. These kinases appear to be stimulated by the activation of D1-like receptors in distinct neuronal populations.  相似文献   

18.
Previous anatomical studies have been unsuccessful in demonstrating significant cortical inputs to cholinergic and somatostatinergic striatal interneurons in rats. On the other hand, electrophysiological studies have shown that cortical stimulation induces monosynaptic EPSPs in cholinergic interneurons. It has been proposed that the negative anatomical findings might have been the result of incomplete labeling of distal dendrites. In the present study, we reinvestigated this issue using m2 muscarinic receptor antibodies as a selective marker for cholinergic and somatostatinergic interneurons in the striatum. This was combined with injections of either the anterograde tracer biotinylated dextran amine (BDA) in the monkey prefrontal cortex or aspiration lesion of the sensorimotor cortex in rats. The results showed that, in both species, a small percentage (1-2%) of cortical terminals make asymmetric synaptic contacts with m2-immunoreactive interneurons in the striatum. Interestingly, the majority of these synapses are onto small dendritic spines or spine-like appendages, as opposed to dendritic shafts and/or cell bodies. Thus, m2-containing striatal interneurons do receive direct cortical inputs and can, therefore, integrate and modulate cortical information flow through the striatum. Although the density of cortical terminals in contact with individual striatal interneurons is likely to be relatively low compared to the massive cortical input to projection neurons, both cholinergic and somatostatinergic interneurons display intrinsic properties that allow even small and distal inputs to influence their overall state of neuronal activity.  相似文献   

19.
A high proportion of neurons in the basal ganglia display rhythmic burst firing after chronic nigrostriatal lesions. For instance, the periodic bursts exhibited by certain striatal and subthalamic nucleus neurons in 6-hydroxydopamine-lesioned rats seem to be driven by the approximately 1 Hz high-amplitude rhythm that is prevalent in the cerebral cortex of anaesthetized animals. Because the striatum and subthalamic nucleus are the main afferent structures of the substantia nigra pars reticulata, we examined the possibility that the low-frequency modulations (periodic bursts) that are evident in approximately 50% nigral pars reticulata neurons in the parkinsonian condition were also coupled to this slow cortical rhythm. By recording the frontal cortex field potential simultaneously with single-unit activity in the substantia nigra pars reticulata of anaesthetized rats, we proved the following. (i) The firing of nigral pars reticulata units from sham-lesioned rats is not coupled to the approximately 1 Hz frontal cortex slow oscillation. (ii) Approximately 50% nigral pars reticulata units from 6-hydroxydopamine-lesioned rats oscillate synchronously with the approximately 1 Hz cortical rhythm, with the cortex leading the substantia nigra by approximately 55 ms; the remaining approximately 50% nigral pars reticulata units behave as the units recorded from sham-lesioned rats. (iii) Periodic bursting in nigral pars reticulata units from 6-hydroxydopamine-lesioned rats is disrupted by episodes of desynchronization of cortical field potential activity. Our results strongly support that nigrostriatal lesions promote the spreading of low-frequency cortical rhythms to the substantia nigra pars reticulata and may be of outstanding relevance for understanding the pathophysiology of Parkinson's disease.  相似文献   

20.
The regulation of the striatal m1 and m4 muscarinic receptor mRNA as well as the choline acetyltransferase (ChAT) mRNA expression by nigral dopaminergic and cortical glutamatergic afferent fibres was investigated using quantitative in situ hybridization histochemistry. The effects induced by a unilateral lesion of the medial forebrain bundle and a bilateral lesion of the sensorimotor (SM) cortex were analysed in the dorsal striatum 3 weeks after the lesions. Dopaminergic denervation of the striatum resulted in a marked decrease in the levels of m4 mRNA throughout the striatum, while the levels of muscarinic m1 mRNA and ChAT mRNA in cholinergic neurons were unaffected by the lesion. In contrast, following bilateral cortical ablation, the levels of the muscarinic m1 mRNA were significantly increased in the striatal projection area of the SM cortex, whereas the expression of m4 mRNA remained unchanged. Single cholinergic cell analysis by computer-assisted grain counting revealed a decreased labelling for ChAT mRNA per neuron following cortical ablation. However, in contrast to the topographical m1 mRNA changes, the decreased ChAT mRNA expression was evenly distributed within the striatum, suggesting an indirect cortical control upon striatal cholinergic interneurons. Altogether, these data suggest that dopaminergic nigral and glutamatergic cortical afferents modulate differentially cholinergic markers, at the pre- and post-synaptic levels. Beside the fact that nigral and cortical inputs exert an opposite control on cholinergic neurotransmission, our study further shows that this control involved different muscarinic receptor subtypes: the m4 and m1 receptors, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号