首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presupplementary motor area (pre-SMA) is a cortical motor-related area which lies in the medial wall of the frontal lobe, immediately anterior to the supplementary motor area (SMA). This area has been considered to participate in the control of complex forelimb movements in a way different from the SMA. In an attempt to analyze the patterns of projections from the pre-SMA to the basal ganglia, we examined the distributions of pre-SMA inputs in the striatum and the subthalamic nucleus and compared them with the SMA input distributions. To detect morphologically the terminal fields from the pre-SMA and the forelimb region of the SMA, anterograde tracers were injected into such areas that had been identified electrophysiologically in the macaque monkey. Corticostriatal inputs from the pre-SMA were distributed mainly in the striatal cell bridges connecting the rostral aspects of the caudate nucleus and the putamen, as well as in their neighboring striatal portions. These input zones were located, with no substantial overlap, rostral to corticostriatal input zones from the SMA forelimb region. Corticosubthalamic input zones from the pre-SMA were almost localized in the medial aspect of the nucleus, where corticosubthalamic inputs from the SMA forelimb region were also distributed predominantly. However, the major terminal fields from the pre-SMA were centered ventrally to those from the SMA. The present results indicate that the corticostriatal and corticosubthalamic input zones from the pre-SMA appear to be segregated from the SMA-derived input zones. This implies the possibility of parallel processing of motor information from the pre-SMA and SMA in the cortico-basal ganglia circuit.  相似文献   

2.
The striatum is the major input station of the basal ganglia. It receives a wide variety of inputs from all areas of the cerebral cortex. In particular, there are several parallel loop circuits, such as the motor, oculomotor, dorsolateral prefrontal, lateral orbitofrontal, and anterior cingulate loops, linking the frontal lobe and the basal ganglia. With respect to the motor loop, the motor-related areas, including the primary motor cortex, supplementary motor area, dorsal and ventral premotor cortices, presupplementary motor area, and rostral and caudal cingulate motor areas, send inputs to sectors of the putamen in combination via separate (parallel) and overlapping (convergent) pathways. Such signals return to the cortical areas of origin via the globus pallidus/substantia nigra and then the thalamus. The somatotopical representation is maintained in each structure that constitutes the motor loop. Employing retrograde transsynaptic transport of rabies virus, we have recently investigated the arrangement of multisynaptic pathways linking the basal ganglia to the caudal aspect of the dorsal premotor cortex (the so-called F2). F2r, the rostral sector of F2, has been shown to be involved in motor planning, whereas F2c, the caudal sector of F2, has been shown to be involved in motor execution. We analyzed the origins of multisynaptic inputs to F2r and F2c in the basal ganglia. Our results indicate that the 2 loop circuits connecting the F2r and F2c with the basal ganglia may possess a common convergent window at the input stage, while they have parallel divergent channels at the output stage.  相似文献   

3.
Although there has been an increasing interest in motor functions of the cingulate motor areas, data concerning their input organization are still limited. To address this issue, the patterns of thalamic and cortical inputs to the rostral (CMAr), dorsal (CMAd), and ventral (CMAv) cingulate motor areas were investigated in the macaque monkey. Tracer injections were made into identified forelimb representations of these areas, and the distributions of retrogradely labeled neurons were analyzed in the thalamus and the frontal cortex. The cells of origin of thalamocortical projections to the CMAr were located mainly in the parvicellular division of the ventroanterior nucleus and the oral division of the ventrolateral nucleus (VLo). On the other hand, the thalamocortical neurons to the CMAd/CMAv were distributed predominantly in the VLo and the oral division of the ventroposterolateral nucleus-the caudal division of the ventrolateral nucleus. Additionally, many neurons in the intralaminar nuclear group were seen to project to the cingulate motor areas. Except for their well-developed interconnections, the corticocortical projections to the CMAr and CMAd/CMAv were also distinctively preferential. Major inputs to the CMAr arose from the presupplementary motor area and the dorsal premotor cortex, whereas inputs to the CMAd/CMAv originated not only from these areas but also from the supplementary motor area and the primary motor cortex. The present results indicate that the CMAr and the caudal cingulate motor area (involving both the CMAd and the CMAv) are characterized by distinct patterns of thalamocortical and intracortical connections, reflecting their functional differences.  相似文献   

4.
The origin of thalamic inputs to distinct motor cortical areas was established in five monkeys to determine whether the motor areas receive inputs from a common thalamic nucleus and the extent to which the territories of origin overlap. To not rely on the rough definition of cytoarchitectonic boundaries in the thalamus, monkeys were subjected to multiple injections of tracers (four to seven) in the primary (M1), premotor (PM), and supplementary (SMA) motor cortical areas and in area 46. The cortical areas were distributed into five groups, each receiving inputs from a specific set of thalamic nuclei: 1) M1; 2) SMA-proper and the caudal part of the dorsal PM (PMdc); 3) the rostral and caudal parts of the ventral PM (PMvr and PMvc); 4) the rostral part of the dorsal PM (PMdr); and 5) the superior and inferior parts of area 46 (area 46sup and area 46inf). A major degree of overlap was obtained for the origins of the thalamocortical projections directed to areas 46inf and 46sup and for those terminating in SMA-proper and PMdc. PMvc and PMvr received inputs from adjacent and/or common thalamic regions. In contrast, the degree of overlap between M1 and SMA was smaller. The projection to M1 shared relatively limited zones of origin with the projections directed to PM. Thalamic inputs to the motor cortical areas (M1, SMA, PMd, and PMv), in general, were segregated from those directed to area 46, except in the mediodorsal nucleus, in which there was clear overlap of the territories sending projections to area 46, SMA-proper, and PMdc.  相似文献   

5.
Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal‐directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys. J. Comp. Neurol. 522:3683–3716, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
We examined the organization of multisynaptic projections from the basal ganglia (BG) to the dorsal premotor area in macaques. After injection of the rabies virus into the rostral sector of the caudal aspect of the dorsal premotor area (F2r) and the caudal sector of the caudal aspect of the dorsal premotor area (F2c), second-order neuron labeling occurred in the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr). Labeled GPi neurons were found in the caudoventral portion after F2c injection, and in the dorsal portion at the rostrocaudal middle level after F2r injection. In the SNr, F2c and F2r injections led to labeling in the caudal or rostral part, respectively. Subsequently, third-order neuron labeling was observed in the external segment of the globus pallidus (GPe), the subthalamic nucleus (STN), and the striatum. After F2c injection, labeled neurons were observed over a broad territory in the GPe, whereas after F2r injection, labeled neurons tended to be restricted to the rostral and dorsal portions. In the STN, F2c injection resulted in extensive labeling over the nucleus, whereas F2r injection resulted in labeling in the ventral portion only. After both F2r and F2c injections, labeled neurons in the striatum were widely observed in the striatal cell bridge region and neighboring areas, as well as in the ventral striatum. The present results revealed that the origins of multisynaptic projections to F2c and F2r in the BG are segregated in the output stations of the BG, whereas intermingling rather than segregation is evident with respect to their input station.  相似文献   

7.
The sensory properties of neurons in the several forelimb areas of rat sensorimotor cortex were examined using the technique of extracellular single-unit recording in the awake, head-restrained rat. Cells with peripheral receptive fields were tested for the amount and modality of sensory input during joint manipulation and brushing and tapping of limbs, face and trunk. Input-output correlations were made on the basis of the results of receptive field mapping and intracortical microstimulation in the same electrode penetration. It was found that neurons (n = 117) in the rostral forelimb area receive virtually no sensory input while 30% of neurons (n = 114) in the caudal forelimb primary motor area do receive such input. The inputs to caudal forelimb motor area neurons were primarily (83%) from single joints; along perpendicular electrode penetrations the same joint that activated a cortical cell also moved when microstimulation was delivered along the same electrode penetration. In the granular and dysgranular zones of somatic sensory forelimb cortex, 70% of neurons (n = 82) were responsive to peripheral sensory inputs, with most of the cells in the granular cortex responsive to cutaneous inputs while cells in the dysgranular cortex were more responsive to deep inputs. The lack of sensory inputs to the rostral forelimb motor area is consistent with the proposal that this region may be a part of the supplementary motor area of the rat.  相似文献   

8.
The ventral striatum mediates goal-directed behavior through limbic afferents. One well-established afferent to the ventral striatum is the amygdaloid complex, which projects throughout the shell and core of the nucleus accumbens, the rostral ventromedial caudate nucleus, and rostral ventromedial putamen. However, striatal regions caudal to the anterior commissure also receive inputs from the amygdala. These caudal areas contain histochemical and cytoarchitectural features that resemble the shell and core, based on our recent studies. Specifically, there is a calcium binding protein (CaBP)-poor region in the lateral amygdalostriatal area that resembles the "shell." To examine the idea that the caudal ventral striatum is part of the "classic" ventral striatum, we placed small injections of retrograde tracers throughout the caudal ventral striatum/amygdalostriatal area and charted the distribution of specific amygdaloid inputs. Amygdaloid inputs to the CaBP-poor zone in the lateral amygdalostriatal area arise from the basal nucleus, the magnocellular subdivision of the accessory basal nucleus, the periamygdaloid cortex, and the medial subdivision of the central nucleus, resembling that of the shell of the ventral striatum found in our previous studies. There are also amygdaloid inputs to CaBP-positive areas outside the shell, which originate mainly in the basal nucleus. Taken together, the "limbic-related" striatum forms a continuum from the rostral ventral striatum through the caudal ventral striatum/lateral amygdalostriatal area based on histochemical and cellular similarities, as well as inputs from the amygdala.  相似文献   

9.

The basal ganglia and motor thalamic nuclei are functionally and anatomically divided into the sensorimotor, supplementary motor, premotor, associative and limbic territories. There exist both primary segregated basal ganglia-thalamocortical loops and convergence of functionally related information from different cortical areas onto these cortical basal gaglia-thalamocortical loops. The basal ganglia-thalamocortical loop arising from the sensorimotor area, supplementary motor area (SMA), premotor area and cingulate motor area provides distinct segregated subloops through the functionally distict stritial, pallidal and thalamic regions with partial overlap. The subthalamic nucleus (STN) is also topographically organized. The ventrolateral part of the caudal 2/3 levels of the medial pallidal segment (GPi) projects to the primary motor area via the oral part of the ventral lateral thalamic nucleus (VLo) (Voa, Vop by Hassler's nomenclature). The thalamic relay nuclei of the GPi projection to SMA are identified in the transitional zoe of the VApc (parvicellular part of the anterior ventral nucleus)-VLo and in the rostromedical part of the VLo. The thalamic nuclei relaying the cingulate subloop are not yet clearly defined. The supplementary motor subloop appears to be divided into the pre-SMA and SMA proper subloops. The premotor area is also divided into the dorsal premotor area subloop and the ventral premotor area subloop. It is suggested that the limbic loop consists of a number of subloops in the monkey as indicated by Haber et al. [67] and in rats [64]. We review here the microcircuitry of the striatum, as well as the convergence and integration between the functionally segregated loops. Finally, we discuss the functional implications of stritial connections.

  相似文献   

10.
The subcortical projections of the centromedian (CM) and the parafascicular (Pf) thalamic nuclei were examined in the squirrel monkey (Saimiri sciureus) by using the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L) as an anterograde tracer. Both CM and Pf project massively to the striatum where they arborize in a complementary fashion. On the one hand, CM innervates most of the putamen caudal to the anterior commissure, a dorsolateral rim of the putamen rostral to the anterior commissure, discrete areas of the head of the caudate nucleus close to the internal capsule, and a lateral sector of the body of the caudate nucleus. On the other hand, Pf provides a heavy input to the head, body, and tail of the caudate nucleus, and to the rostral putamen, excluding the areas innervated by CM. In addition, Pf projects more discretely to the nucleus accumbens and the olfactory tubercle. Therefore, the projections from both CM and Pf cover the entire striatum, with those from CM arborizing into the "sensorimotor" striatal territory and the ones from Pf innervating the "associative-limbic" striatal territory. Furthermore, CM and Pf project to extrastriatal subcortical structures, such as the globus pallidus, the subthalamic nucleus, and the substantia nigra, where they also terminate in a complementary fashion. Topographically and cytologically, Pf is closely related to the subparafascicular nucleus (sPf). The Pf-sPf complex projects to the hypothalamus, the substantia innominata, the peripeduncular nucleus, and the amygdala. It also gives rise to descending efferents arborizing in various brainstem structures, including the inferior olivary complex. Additional studies with retrograde double-labeling methods show that distinct cell groups within CM project to the motor cortex and the striatum. Likewise, separate neuronal populations within the CM-Pf-sPf complex give rise to striatal and brainstem projections, the former arising from CM and Pf and the latter mainly from sPf. The complementary nature of CM and Pf projections to the striatum and other basal ganglia components suggests that this thalamic complex participates in a highly ordered manner in the parallel processing of the information that flows through the basal ganglia.  相似文献   

11.
In addition to the cerebral cortex, the striatum receives excitatory input from the thalamus. The centromedian (centre median, CM) and parafascicular (Pf) nuclei are an important source of thalamostriatal projections. Anterograde tract-tracing indicates the CM-Pf complex provides dense afferents to the matrix compartment of the striatum. Whereas CM projects to the entire sensorimotor territory of the striatum, the Pf provides complementary input to the entire associative sector. The Pf also provides lighter input to the nucleus accumbens. Both CM and Pf provide light to moderately dense inputs to other components of the basal ganglia in a largely complementary manner, covering motor or associative-limbic territories of the subthalamic nucleus, globus pallidus and ventral midbrain. In turn, the CM and Pf receive mainly segregated input from parallel motor and associative-limbic circuits of the basal ganglia. The CM and Pf may therefore be considered important participants in parallel processing of motor and associative-limbic information in the basal ganglia. Connections of the CM and Pf with other thalamic nuclei suggest they also participate in integrative functions within the thalamus. In addition, inputs from the brainstem reticular core, reciprocal connections with the cerebral cortex and reticular thalamic nucleus suggest a role in state-dependant information processing. Consideration of the differential connections of the CM and Pf, and better understanding of their role in pathophysiology, may eventually lead to development of an important new target for relief of a variety of neurological and psychiatric disorders.  相似文献   

12.
To investigate the degree of convergence of corticostriatal inputs from the primary motor cortex (MI) and the supplementary motor area (SMA), we analyzed the extent to which corticostriatal inputs from forelimb representations of these motor-related areas spatially overlap in the macaque monkey. Of particular interest was that corticostriatal input zones from SMA overlapped those from MI of the contralateral hemisphere more extensively than from MI of the ipsilateral hemisphere.  相似文献   

13.
We investigated the distribution of neurons in the substantia nigra pars reticulata (SNr) which received cortical input. The activities of single SNr neurons were studied extracellulary in awake monkeys. SNr neurons showed excitatory and/or inhibitory responses to cortical stimulation. These responses were considered to be mediated by the subthalamic nucleus and striatum, respectively. The neurons receiving inhibitory input from the motor, premotor and supplementary motor areas (Motor-related cortical areas) were located in the lateral part of the SNr, whereas those with input from the medial, dorsal and orbital areas of the prefrontal cortex (PFmdo) were frequently found in the rostro–medial part of this nucleus. SNr neurons with inhibitory input from the ventral periprincipal area (PSv) were mainly distributed in the intermedio–lateral portion, with some degree of overlap with input from other cortical areas. The distribution of the excitatory input was almost similar to that of inhibitory one, but the excitatory input from the PSv was much stronger than that from the PFmdo. Some SNr neurons receiving cortical input were proved to project to the thalamus. Our results support the existence of several parallel organization of the cortico–basal ganglia loop circuits [G.E. Alexander, M.R. DeLong, P.L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci., 9, 1986, pp. 357–381.], but interaction between the loops can not be ignored.  相似文献   

14.
Thalamic input to inferior area 6 and area 4 in the macaque monkey   总被引:1,自引:0,他引:1  
Recent cytoarchitectonic, histochemical, and hodological studies in primates have shown that area 6 is formed by three main sectors: the supplementary motor area, superior area 6, which lies medial to the spur of the arcuate sulcus, and inferior area 6, which is located lateral to it. Inferior area 6 has been further subdivided into two histochemical areas: area F5, located along the inferior limb of the arcuate sulcus, and area F4, located between area F5 and area 4 (area F1). The present study traced the thalamocortical projections of inferior area 6 and the adjacent part of area 4 by injecting small amounts of WGA-HRP in specific sectors of the agranular frontal cortex. Our data showed that each histochemical area receives a large projection from one nucleus of the ventrolateral thalamus (motor thalamus) and additional projections from other nuclei of this thalamic sector. Area F5 receives a large projection from area X of Olszewski ('52) and additional projections from the caudal part of the nucleus ventralis posterior lateralis, pars oralis (VPLo), and the nucleus ventralis lateralis, pars caudalis (VLc) (VPLo-VLc complex). Area F4 receives a large projection from the nucleus ventralis lateralis, pars oralis (VLo), and additional projections from area X and the VPLo-VLc complex. The rostral part of area F1 is innervated chiefly by VLo, plus smaller contributions from rostral VPLo and the VPLo-VLc complex. The caudal part of F1 receives its greatest input from VPLo, with a small contribution from VLo. In addition, each histochemical area receives projections originating from the intralaminar thalamic nuclei, the posterior thalamus, and--for area F4 and area F5--also from the nucleus medialis dorsalis (MD). Analysis of the physiological properties of the various histochemical areas in relation to their main thalamic input showed that those cortical fields in which distal movements are predominant (area F5, caudal part of area F1) are innervated chiefly by area X and VPLo, whereas those cortical fields in which proximal movements are predominant receive their main input from VLo. Because VPLo and area X are targets of cerebellothalamic pathways, whereas VLo receives a pallidal input, we propose that the cortical fields in which distal movements are most heavily represented are mainly under the influence of the cerebellum, whereas the cortical fields in which proximal movements are most heavily represented are mainly under the influence of the basal ganglia.  相似文献   

15.
Although frontal lobe interconnections of the primary (area 4 or M1) and supplementary (area 6m or M2) motor cortices are well understood, how frontal granular (or prefrontal) cortex influences these and other motor cortices is not. Using fluorescent dyes in rhesus monkeys, we investigated the distribution of frontal lobe inputs to M1, M2, and the cingulate motor cortex (area 24c or M3, and area 23c). M1 received input from M2, lateral area 6, areas 4C and PrCO, and granular area 12. M2 received input from these same areas as well as M1; granular areas 45, 8, 9, and 46; and the lateral part of the orbitofrontal cortex. Input from the ventral part of lateral area 6, area PrCO, and frontal granular cortex targeted only the ventral portion of M1, and primarily the rostral portion of M2. In contrast, M3 and area 23c received input from M1, M2; lateral area 6 and area 4C; granular areas 8, 12, 9, 46, 10, and 32; as well as orbitofrontal cortex. Only M3 received input from the ventral part of lateral area 6 and areas PrCO, 45, 12vl, and the posterior part of the orbitofrontal cortex. This diversity of frontal lobe inputs, and the heavy component of prefrontal input to the cingulate motor cortex, suggests a hierarchy among the motor cortices studied. M1 receives the least diverse frontal lobe input, and its origin is largely from other agranular motor areas. M2 receives more diverse input, arising primarily from agranular motor and prefrontal association cortices. M3 and area 23c receive both diverse and widespread frontal lobe input, which includes agranular motor, prefrontal association, and frontal limbic cortices. These connectivity patterns suggest that frontal association and frontal limbic areas have direct and preferential access to that part of the corticospinal projection which arises from the cingulate motor cortex. © 1993 Wiley-Liss,Inc.  相似文献   

16.
The claustrum is interconnected with the frontal lobe, including the motor cortex, prefrontal cortex, and cingulate cortex. The goal of the present study was to assess whether the claustral projections to distinct areas within the frontal cortex arise from separate regions within the claustrum. Multiple injections of tracers were performed in 15 macaque monkeys, aimed toward primary motor area (M1), pre-supplementary motor area (pre-SMA), SMA-proper, rostral (PMd-r) and caudal (PMd-c) parts of the dorsal premotor cortex (PM), rostral (PMv-r) and caudal (PMv-c) parts of the ventral PM, and superior and inferior parts of area 46. The distribution of retrogradely labeled neurons showed no clear segregation along the rostrocaudal axis of the claustrum; they were usually located along the entire anteroposterior extent of the claustrum. For all motor cortical areas, there was a general trend of the labeled neurons to occupy the dorsal and intermediate parts of the claustrum along the dorsoventral axis. The same territories were labeled after injection in area 46, but in addition numerous labeled neurons were found in the most ventral part of the claustrum. At higher resolution, however, there was clear evidence that the territories projecting to pre-SMA and SMA-proper formed separate, interdigitating, clusters along the dorsoventral axis. A comparable local segregation was observed for the two subdivisions of area 46, whereas there was more local overlap among the subareas of PM. The projections from the claustrum to the multiple subareas of the motor cortex and to area 46 arise from largely overlapping territories, with, however, some degree of local segregation.  相似文献   

17.
Rats have a complete body representation in the primary motor cortex (M1). Rostrally there are additional representations of the forelimb and whiskers, called the rostral forelimb area (RFA) and the rostral whisker area (RWA). Recently we showed that sources of thalamic inputs to RFA and RWA are similar, but they are different from those for the caudal forelimb area (CFA) and the caudal whisker area (CWA) of M1 (Mohammed and Jain [2014] J Comp Neurol 522:528–545). We proposed that RWA and RFA are part of a second motor area, the rostral motor area (RMA). Here we report ipsilateral cortical connections of whisker representation in RMA, and compare them with connections of CWA. Connections of RFA, CFA, and the caudally located hindlimb area (CHA), which is a part of M1, were determined for comparison. The most distinctive features of cortical inputs to RWA compared with CWA include lack of inputs from the face region of the primary somatosensory cortex (S1), and only about half as much inputs from S1 compared with the lateral somatosensory areas S2 (second somatosensory area) and the parietal ventral area (PV). A similar pattern of inputs is seen for CFA and RFA, with RFA receiving smaller proportion of inputs from the forepaw region of S1 compared with CFA, and receiving fewer inputs from S1 compared with those from S2. These and other features of the cortical input pattern suggest that RMA has a distinct, and more of integrative functional role compared with M1. J. Comp. Neurol. 524:3104–3123, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
The present investigation is part of a broader effort to examine cortical areas that contribute to manual dexterity, reaching, and grasping. In this study we examine the thalamic connections of electrophysiologically defined regions in area 3a and architectonically defined primary motor cortex (M1). Our studies demonstrate that area 3a receives input from nuclei associated with the somatosensory system: the superior, inferior, and lateral divisions of the ventral posterior complex (VPs, VPi, and VPl, respectively). Surprisingly, area 3a receives the majority of its input from thalamic nuclei associated with the motor system, posterior division of the ventral lateral nucleus of the thalamus (VL), the mediodorsal nucleus (MD), and intralaminar nuclei including the central lateral nucleus (CL) and the centre median nucleus (CM). In addition, sparse but consistent projections to area 3a are from the anterior pulvinar (Pla). Projections from the thalamus to the cortex immediately rostral to area 3a, in the architectonically defined M1, are predominantly from VL, VA, CL, and MD. There is a conspicuous absence of inputs from the nuclei associated with processing somatic inputs (VP complex). Our results indicate that area 3a is much like a motor area, in part because of its substantial connections with motor nuclei of the thalamus and motor areas of the neocortex (Huffman et al. [2000] Soc. Neurosci. Abstr. 25:1116). The indirect input from the cerebellum and basal ganglia via the ventral lateral nucleus of the thalamus supports its role in proprioception. Furthermore, the presence of input from somatosensory thalamic nuclei suggests that it plays an important role in somatosensory and motor integration.  相似文献   

19.
The ipsilateral connections of motor areas of galagos were determined by injecting tracers into primary motor cortex (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF). Other injections were placed in frontal cortex and in posterior parietal cortex to define the connections of motor areas further. Intracortical microstimulation was used to identify injection sites and map motor areas in the same cases. The major connections of M1 were with premotor cortex, SMA, cingulate motor cortex, somatosensory areas 3a and 1, and the rostral half of posterior parietal cortex. Less dense connections were with the second (S2) and parietal ventral (PV) somatosensory areas. Injections in PMD labeled neurons across a mediolateral belt of posterior parietal cortex extending from the medial wall to lateral to the intraparietal sulcus. Other inputs came from SMA, M1, PMV, and adjoining frontal cortex. PMV injections labeled neurons across a large zone of posterior parietal cortex, overlapping the region projecting to PMD but centered more laterally. Other connections were with M1, PMD, and frontal cortex and sparsely with somatosensory areas 3a, 1-2, S2, and PV. SMA connections were with medial posterior parietal cortex, cingulate motor cortex, PMD, and PMV. An FEF injection labeled neurons in the intraparietal sulcus. Injections in posterior parietal cortex revealed that the rostral half receives somatosensory inputs, whereas the caudal half receives visual inputs. Thus, posterior parietal cortex links visual and somatosensory areas with motor fields of frontal cortex.  相似文献   

20.
The present study was undertaken to establish the precise anatomical relationship of the subthalamic nucleus (STh) with limbic lobe-afferented parts of the basal ganglia in the rat. The anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), injected in the STh, the globus pallidus, the ventral pallidum, the ventral striatum, and the parafascicular thalamic nucleus, and the retrograde tracers Fluoro-Gold (FG) and cholera toxin B (CTb), injected in the globus pallidus, the ventral pallidum, the ventral striatum, and the ventral mesencephalon, were used for this purpose. The results of these tracing experiments confirm the general notion of reciprocal connections between the STh and pallidal areas. Thus the dorsomedial part of the STh is connected with the subcommisural ventral pallidum, whereas a more ventral and lateral part of the medial STh is related to the medial globus pallidus. The lateral hypothalamic area, directly adjacent to the STh, containing neurons with a morphology quite similar to those in the STh, projects to parts of the ventral pallidum related to the olfactory tubercle. The reciprocal projection from this pallidal area to subthalamic regions appears to be very sparse. The medial STh sends strong projections to the medial part of the entopeduncular nucleus and the adjacent lateral hypothalamic area. Sparser projections from the medial STh reach the rostral and medial part of the caudate-putamen and the nucleus accumbens. The nucleus accumbens sends a very sparse projection back to the medial STh. The projections of the medial STh to the ventral mesencephalon appear also to be topographically organized. The lateral hypothalamus and a few cells in the most medial part of the STh project to the ventral tegmental area, whereas progressively more lateral parts of the ventral mesencephalon, in particular the substantia nigra, receive input from successively more lateral and caudal parts of the STh. In addition, a number of STh fibers reach the midbrain extrapyramidal area. The lateral part of the parafascicular thalamic nucleus projects to the lateral part of the STh, whereas parafascicular neurons medial to the fasciculus retroflexus project to the dorsomedial portion of the STh. The medial part of the STh and the adjacent lateral hypothalamus are intimately connected with limbic parts of the basal ganglia in a way similar and parallel to the connections of the lateral STh with motor-related parts of the basal ganglia. These findings suggest a role for the STh in nonmotor functions of the basal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号