首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We report on the striking variable expression of adenylosuccinate lyase (ADSL) deficiency in three patients belonging to a family which originates from Portugal. ADSL deficiency is a rare autosomal recessive disorder of the de novo purine synthesis which results in accumulation of succinylpurines in body fluids. As a result, patients may have variable combinations of psychomotor retardation and/or regression, seizures, autistic features and cerebellar vermis hypoplasia. However, intrafamilial variable expression of the phenotype has not been documented to date in this disease and is not commonly observed in metabolic disorders. Here, while the proband had marked psychomotor regression and progressive cerebellar vermis atrophy, the other two affected patients presented mainly autistic features. Mutation analysis of the ADSL gene revealed the presence of a homozygous R426H mutation in this family. Finally, although ADSL deficiency is a rare disorder, this diagnosis should be considered and assessed using a simple urinary screening method for the presence of succinylpurines in any patient with mental retardation of unexplained origin.  相似文献   

2.
Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency.  相似文献   

3.
Misleading behavioural phenotype with adenylosuccinate lyase deficiency   总被引:1,自引:0,他引:1  
Adenylosuccinate lyase deficiency is a rare autosomal disorder of de novo purine synthesis, which results in the accumulation of succinylpurines in body fluids. Patients with adenylosuccinate lyase deficiency show a variable combination of mental retardation, epilepsy and autistic features and are usually discovered during screens for unexplained encephalopathy using the Bratton-Marshall assay that reveals the excretion of the succinylaminoimidazolecarboxamide riboside (SAICAr). Here, we report on two sisters aged 11 and 12 years presented with global developmental delay, motor apraxia, severe speech deficits, seizures and behavioural features, which combined excessive laughter, a very happy disposition, hyperactivity, a short attention span, the mouthing of objects, tantrums and stereotyped movements that gave a behavioural profile mimicking Angelman syndrome. Both patients had an increased succinyladenosine/SAICAr ratio of 1.6, and exhibited a novel homozygous missense mutation (c.674T>C; p.Met225Thr) in the exon 6 of the ADSL gene. We suggest that these clinical features might be a new presentation of adenylosuccinate lyase deficiency. On the basis of this observation, although adenylosuccinate lyase deficiency is a rare disorder, this diagnosis should be considered in patients with mental retardation and a behavioural profile suggestive of Angelman syndrome.  相似文献   

4.
Adenylosuccinate lyase (ADSL) deficiency (MIM 103050) is an autosomal recessive inborn error of purine synthesis characterized by the accumulation in body fluids of succinylaminoimidazolecarboxamide (SAICA) riboside and succinyladenosine (S-Ado), the dephosphorylated derivatives of the two substrates of the enzyme. Because ADSL-deficient patients display widely variable degrees of psychomotor retardation, we have expressed eight mutated ADSL enzymes as thioredoxin fusions and compared their properties with the clinical and biochemical characteristics of 10 patients. Three expressed mutated ADSL enzymes (M26L, R426H and T450S) were thermolabile, four (A2V, R141W, R303C and S395R) were thermostable and one (del206-218), was inactive. Thermolabile mutations decreased activities with SAICA ribotide (SAICAR) and adenylosuccinate (S-AMP) in parallel, or more with SAICAR than with S-AMP. Patients homozygous for one of these mutations, R426H, displayed similarly decreased ADSL activities in their fibroblasts, S-Ado:SAICA riboside ratios of approximately 1 in their cerebrospinal fluid and were profoundly retarded. With the exception of A2V, thermostable mutations decreased activity with S-AMP to a much more marked extent than with SAICAR. Two unrelated patients homozygous for one of the thermostable mutations, R303C, also displayed a much more marked decrease in the activity of fibroblast ADSL with S-AMP than with SAICAR, had S-Ado:SAICA riboside ratios between 3 and 4 in their cerebrospinal fluid and were mildly retarded. These results suggest that, in some cases, the genetic lesion of ADSL determines the ratio of its activities with S-AMP versus SAICAR, which in turn defines the S-Ado:SAICA riboside ratio and the patients' mental status.  相似文献   

5.
Adenylosuccinate lyase deficiency   总被引:1,自引:0,他引:1  
Adenylosuccinate lyase deficiency is a disease of purine metabolism which affects patients both biochemically and behaviorally. The symptoms are variable and include psychomotor retardation, autistic features, hypotonia, and seizures. Patients also accumulate the substrates of ADSL in body fluids. Both the presence of normal levels of ADSL enzyme activities in some patient tissues and the absence of a clear correlation between mutations, biochemistry, and behavior show that the system has unexplored biochemical and/or genetic complexity. It is unclear whether the pathological mechanisms of this disease result from a deficiency of purines, a toxicity of intermediates, or perturbation of another pathway or system. A patient with autistic features and mild psychomotor delay carries two novel mutations in this gene, E80D and D87E. The creation of a mouse model of this disease will be an important step in elucidating the in vivo mechanisms of the disease. Mice carrying mutations that cause ADSL deficiency in humans will be informative as to the effects of these mutations both during embryogenesis and on the brain, possibly leading to therapies for this disease in the future.  相似文献   

6.
Adenylosuccinate lyase (ADSL) is a bifunctional enzyme acting in de novo purine synthesis and purine nucleotide recycling. ADSL deficiency is a selectively neuronopathic disorder with psychomotor retardation and epilepsy as leading traits. Both dephosphorylated enzyme substrates, succinylaminoimidazole-carboxamide riboside (SAICAr) and succinyladenosine (S-Ado), accumulate in the cerebrospinal fluid (CSF) of affected individuals with S-Ado/SAICAr concentration ratios proportional to the phenotype severity. We studied the disorder at various levels in a group of six patients with ADSL deficiency. We identified the complete ADSL cDNA and its alternatively spliced isoform resulting from exon 12 skipping. Both mRNA isoforms were expressed in all the tissues studied with the non-spliced form 10-fold more abundant. Both cDNAs were expressed in Escherichia coli and functionally characterized at the protein level. The results showed only the unspliced ADSL to be active. The gene consists of 13 exons spanning 23 kb. The promotor region shows typical features of the housekeeping gene. Eight mutations were identified in a group of six patients. The expression studies of the mutant proteins carried out in an attempt to study genotype-phenotype correlation showed that the level of residual enzyme activity correlates with the severity of the clinical phenotype. All the mutant enzymes studied in vitro displayed a proportional decrease in activity against both of their substrates. However, this was not concordant with strikingly different concentration ratios in the CSF of individual patients. This suggests either different in vivo enzyme activities against each of the substrates and/or their different turnover across the CSF-blood barrier, which may be decisive in determining disease severity.  相似文献   

7.
The deficiency of adenylosuccinate lyase (ADSL, also termed adenylosuccinase) is an autosomal recessive disorder characterized by the accumulation in body fluids of succinylaminoimidazole-carboxamide riboside (SAICA-riboside) and succinyladenosine (S-Ado). Most ADSL-deficient children display marked psychomotor delay, often accompanied by epilepsy or autistic features, or both, although some patients may be less profoundly retarded. Occasionally, growth retardation and muscular wasting are also present. Up to now, nine missense mutations of the ADSL gene had been reported in six apparently unrelated sibships. In the present study of 10 additional patients with ADSL deficiency, nine point mutations, among which seven unreported missense mutations, and the first splicing error reported in this disorder, have been identified. These mutations have been characterized, taking into account the finding that the cDNA of human ADSL is 75 nucleotides longer at its 5'-end, and encodes a protein of 484 rather than 459 amino acids as previously reported. Five apparently unrelated patients were found to carry a R426H mutation. With the exceptions of the latter mutation, of a R190Q mutation that had been reported previously, and of a K246E mutation that was found in two unrelated patients, all other mutations were found only in a single family.  相似文献   

8.
SLC25A1 mutations are associated with combined D,L‐2‐hydroxyglutaric aciduria (DL‐ 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal‐onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2‐OH‐glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V‐associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.
  相似文献   

9.
We ascertained a patient with the full-blown phenotype of isolated sulfite oxidase deficiency in a consanguineous Arab family. The proband's phenotype included the presence of intractable seizures in the neonatal period, some dysmorphic features, neuroradiologic findings reminiscent of hypoxic ischemic encephalopathy and rapidly progressive brain destruction leading to severe neurodevelopmental impairment. Biochemically, the patient excreted a large amount of S-sulfocysteine with normal amounts of xanthene and hypoxanthine and had normal plasma uric acid, which was consistent with isolated sulfite oxidase deficiency. We report the identification of the first Arab mutation in SUOX, the gene for sulfite oxidase enzyme, in the ascertained family. The newly identified Arab mutation in the SUOX gene (a single nucleotide deletion, del G1244) is predicted to cause a frame shift at amino acid 117 of the translated protein with the generation of a stop codon and total truncation of the molybdo-pterin- and the dimerizing-domain(s) of SUOX protein expressed from the mutant allele. The identification of this new Arab SUOX mutation should facilitate pre-implantation genetic diagnosis and selection of unaffected embryos for future pregnancy in the ascertained family with the mutation and related families with the same mutation.  相似文献   

10.
Three enzymes of purine metabolism, adenylosuccinate synthetase, adenylosuccinate lyase and AMP deaminase, have been proposed to form a functional unit, termed the purine nucleotide cycle. This cycle converts AMP into IMP and reconverts IMP into AMP via adenylosuccinate, thereby producing NH3 and forming fumarate from aspartate. In muscle, the purine nucleotide cycle has been shown to function during intense exercise; the metabolic flux through the cycle has been proposed to play a role in the regeneration of ATP by pulling the adenylate kinase reaction in the direction of formation of ATP, and by providing Krebs cycle intermediates. In kidney, the purine nucleotide cycle was shown to account for the release of NH3 under the normal acid-base status, but not under acidotic conditions. In brain, the purine nucleotide cycle might function under conditions that induce a loss of ATP, and thereby contribute to its recovery. There is no evidence that the purine nucleotide cycle operates in liver. Deficiency of muscle AMP deaminase is an apparently frequent disorder, which might affect approximately 2% of the general population. The observation that it can be found in clinically asymptomatic individuals suggests, paradoxically, that the ATP-regenerating function which has been attributed to the purine nucleotide cycle is not essential for muscle function. Further work should be aimed at identifying the conditions under which AMP deaminase deficiency becomes symptomatic. Adenylosuccinate lyase deficiency provokes psychomotor retardation, often accompanied by autistic features. Its clinical heterogeneity justifies systematic screening in patients with unexplained mental deficiency. Additional studies are required to determine the mechanisms whereby this enzyme defect results in psychomotor retardation.  相似文献   

11.
We describe clinical manifestations and magnetic resonance imaging (MRI) findings in a man and his mother who were diagnosed as having a neuronal migration disorder. The son had severe psychomotor retardation and the mother had intractable seizures and mild psychomotor retardation. MRI demonstrated moderate pachygyria in the son and subcortical heterotopia in the mother. In both patients, the frontal parts of the brain were characteristically more affected than any other areas. A dominant pattern of inheritance in the family suggests a genetic role in the underlying cause of the migration disorder. The difference in severity between the two patients also suggests an X-linked dominant inheritance. Our family fits the condition of X-linked lissencephaly. Am. J. Med. Genet. 75:481–484, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Fumarase (FH) deficiency is a rare autosomal recessive disease of the Krebs cycle causing severe neurological impairment in early childhood, characterized by encephalopathy with seizures and muscular hypotonia. Only a handful of patients with various recessive mutations in the FH gene have been described so far. Interestingly, autosomal dominant mutations in the same gene are associated with hereditary leiomyomatosis and renal cell cancer (HLRCC). We investigated a boy with developmental and growth delay, microcephaly, and muscular hypotonia recognized at the age of 3 months. No leiomyomatosis or renal cancer is known in the parents. Investigation of the patient's urine revealed massive fumarate excretion. FH activity was severely reduced in muscle and fibroblasts. Respirometric investigation of fibroblasts showed only modest changes indicating that fumarate mediated inhibition of enzymatic pathways other than oxidative phosphorylation might be more relevant in pathophysiology of FH deficiency. Molecular analysis revealed a known 435insK mutation on the paternal allele and a novel H275L mutation due to an A to T transversion of nucleotide 824 on the maternal allele. This mutation affects the same codon as a C to T transition of nucleotide 823, resulting in a H275Y mutation that was found in two families with HLRCC.  相似文献   

13.
Seven patients, including two sibs, with the Brachmann-de Lange syndrome (BDLS) are presented as representative of the different types of BDLS in a proposed classification system. Type I (“classic”) patients have the characteristic facial and skeletal changes of BDLS using the criteria in the diagnostic index of Preus and Rex. Type I is distinguished from the other subtypes by prenatal growth deficiency (< 2.5 S.D. below mean for gestation) becoming more severe postnatally (< 3.5 S.D. below the mean), moderate to profound psychomotor retardation, and major malformations which result in severe disability or death. Type II (“mild”) BDLS patients have similar facial and minor skeletal abnormalities to those seen in type I; however, these changes may develop with time or may be partially expressed. Patients with type II BDLS are distinguished from those with other types by mild to borderline psychomotor retardation, less severe pre-and postnatal growth deficiency, and the absence of (or loss severe) major malformations. Behavioral problems can be a significant clinical problem in type II BDLS. Type III (“phenocopies”) BDLS includes patients who have phenotypic manifestations of BDLS which are causally related to chromosomal aneuploidies or teratogenic exposures. © 1993 Wiley-Liss, Inc.  相似文献   

14.
15.
Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Glutamine deficiency with hyperammonemia due to an inherited defect of glutamine synthetase (GS) was found in a 2 year old patient. He presented neonatal seizures and developed chronic encephalopathy. Thus, GS deficiency leads to severe neurological disease but is not always early lethal.  相似文献   

17.
Adenylosuccinate lyase (ADSL) deficiency is an inherited metabolic disorder affecting predominantly the central nervous system. The disease is characterized by the accumulation of succinylaminoimidazolecarboxamide riboside and succinyladenosine (S‐Ado) in tissue and body fluids. Three children presented with muscular hypotonia, psychomotor delay, behavioral abnormalities, and white matter changes on brain MRI. Two of them were affected by seizures. Screening for inborn errors of metabolism including in vitro high resolution proton MRS revealed an ADSL deficiency that was confirmed genetically in all cases. All patients were studied by in vivo proton MRS. In vitro high resolution proton MRS of patient cerebrospinal fluid showed singlet resonances at 8.27 and 8.29 ppm that correspond to accumulated S‐Ado. In vivo proton MRS measurements also revealed a prominent signal at 8.3 ppm in gray and white matter brain regions of all patients. The resonance was undetectable in healthy human brain. In vivo proton MRS provides a conclusive finding in ADSL deficiency and represents a reliable noninvasive diagnostic tool for this neurometabolic disorder. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Neonatal epileptic encephalopathies with suppression bursts (SBs) are very severe and relatively rare diseases characterized by neonatal onset of seizures, interictal electroencephalogram (EEG) with SB pattern and very poor neurological outcome or death. Their etiology remains elusive but they are occasionally caused by metabolic diseases or malformations. Studying an Arab Muslim Israeli consanguineous family, with four affected children presenting a severe neonatal epileptic encephalopathy, we have previously identified a mutation in the SLC25A22 gene encoding a mitochondrial glutamate transporter. In this report, we describe a novel SLC25A22 mutation in an unrelated patient born from first cousin Algerian parents and presenting severe epileptic encephalopathy characterized by an EEG with SB, hypotonia, microcephaly and abnormal electroretinogram. We showed that this patient carried a homozygous p.G236W SLC25A22 mutation which alters a highly conserved amino acid and completely abolishes the glutamate carrier's activity in vitro . Comparison of the clinical features of patients from both families suggests that SLC25A22 mutations are responsible for a novel clinically recognizable epileptic encephalopathy with SB.  相似文献   

19.
We report on a girl with monosomy 1p36.3 and Angelman syndrome due to an unbalanced transmission of a maternal balanced chromosomal translocation. She manifested monosomy 1p36 and Angelman syndrome including generalized hypopigmentation, ataxic movements, intractable seizures with characteristic electroencephalographic (EEG) abnormality compatible with Angelman syndrome, and other minor anomalies, large anterior fontanelle, severe psychomotor retardation, and seizures due to monosomy 1p36. Her karyotype was 45, XX, der(1) t(1;15)(p36.31;q13.1),-15, derived from maternal translocation. Molecular analysis determined a breakpoint of 1p between D1S243 and D1S468, which suggested that most genes contributing to the common phenotype are in the distal region.  相似文献   

20.
The production, isolation, and characterization of a new complementation group (AdeI)of adenine-requiring mutant of Chinese hamster cells (CHO-K1) is described. This mutant accumulates two intermediates of purine biosynthesis, both of which contain an aspartate moiety. One of these is shown to be adenylosuccinic acid (AMPS) by Chromatographic analysis, while evidence is presented that strongly suggests the other intermediate is succinylaminoimidazole carboxamide ribotide (SAICAR). Thus, AdeIis most likely lacking the activity of the enzyme adenylosuccinase (EC 4.3.2.2). The use of this and similar mutants for the analysis of regulation of purine biosynthesis in mammalian cells is discussed.Recipient of a Research Career Development Award, National Institute of Arthritis, Metabolism, and Digestive Diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号