首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Maternal nutrient restriction at specific stages of gestation has differential effects on fetal development such that the offspring are programmed to be at increased risk of a range of adult diseases, including obesity. We investigated the effect of maternal nutritional manipulation through gestation on fetal adipose tissue deposition in conjunction with mRNA abundance for uncoupling protein (UCP)1 and 2, peroxisome proliferator-activated receptors (PPAR)alpha and gamma, together with long and short forms of the prolactin receptor (PRLR). Singleton-bearing ewes were either nutrient restricted (3.2-3.8 MJ day(-1) metabolizable energy) or fed to appetite (8.7-9.9 MJ day(-1)) over the period of maximal placental growth, i.e. between 28 and 80 d gestation. After 80 d gestation, ewes were either fed to calculated requirements, (6.7-7.5 MJ day(-1)), or to appetite (8.0-10.9 MJ day(-1)). At term, offspring of nutrient-restricted ewes possessed more adipose tissue, an adaptation that was greatest in those born to mothers that fed to requirements in late gestation. This was accompanied by an increased mRNA abundance for UCP2 and PPARalpha, an adaptation not seen in mothers re-fed to appetite. Maternal nutrition had no effect on mRNA abundance for UCP1, PPARgamma, or PRLR. Irrespective of maternal nutrition, mRNA abundance for UCP1 was positively correlated with PPARgamma and the long and short forms of PRLR, indicating that these factors may act together to ensure that UCP1 abundance is maximized in the newborn. In conclusion, we have shown, for the first time, differential effects of maternal nutrition on key regulatory components of fetal fat metabolism.  相似文献   

3.
During fetal life, adipose tissue is predominantly comprised of brown or thermogenic adipocytes and there is a transition to white, lipid-storing adipocytes after birth concomitant with the onset of suckling. In pregnancies complicated by gestational diabetes, the fetus is hyperglycemic, has an increased fat mass, and is at increased risk of obesity in later life. In the present study, we have investigated the hypothesis that exposure to increased maternal nutrition during late gestation results in increased expression of genes that regulate adipogenesis and lipogenesis in perirenal fat in fetal sheep. Pregnant ewes were fed either at or approximately 55% above maintenance energy requirements during late pregnancy and quantitative RT-PCR was used to measure peroxisome proliferator-activated receptor gamma, lipoprotein lipase, glycerol-3-phosphate dehydrogenase, adiponectin, and leptin mRNA expression. We report that exposure to metabolic and hormonal signals of increased nutrition before birth results in an increase in the expression of the adipogenic factor, peroxisome proliferator-activated receptor gamma, and in lipoprotein lipase, adiponectin, and leptin mRNA expression in fetal perirenal fat. We propose that an increase in maternal, and hence fetal, nutrition results in a precocial increase in adipogenic, lipogenic, and adipokine gene expression in adipose tissue and that these changes may be important in the development of obesity in later life.  相似文献   

4.
5.
In developed countries, the increasing incidence of obesity is a serious health problem. Leptin exposure in the perinatal period affects long-term regulation of appetite and energy expenditure, but control of leptin production in utero is unclear. This study investigated perirenal adipose tissue (PAT) and placental leptin expression in ovine fetuses during late gestation and after manipulation of plasma glucocorticoid and thyroid hormone concentrations. Between 130 and 144 d of gestation (term at 145 +/- 2 d), plasma leptin and PAT leptin mRNA levels increased in association with increments in plasma cortisol and T(3). Fetal adrenalectomy prevented these developmental changes, and exposure of intact 130 d fetuses to glucocorticoids, by cortisol infusion or maternal dexamethasone treatment, caused premature elevations in plasma leptin and PAT leptin gene expression. Fetal thyroidectomy increased plasma leptin and PAT leptin mRNA abundance, whereas intravenous T(3) infusion to intact 130 d fetuses had no effect on circulating or PAT leptin. Leptin mRNA expression was low in the ovine placenta. Therefore, in the sheep fetus, PAT appears to be a primary source of leptin in the circulation, and leptin gene expression is regulated by both glucocorticoids and thyroid hormones. Developmental changes in circulating and PAT leptin may mediate the maturational effects of cortisol in utero and have long-term consequences for appetite regulation and the development of obesity.  相似文献   

6.
OBJECTIVE: To assess the effect of chronic treatment with CGP-12177 a beta3-adrenergic receptor (AR) agonist with beta2/beta1-AR antagonist action, on the expression of the leptin gene and of genes coding for uncoupling proteins (ucp1, ucp2 and ucp3) in brown and white adipose tissues. DESIGN: NMRI mice received a daily subcutaneous injection of CGP-12177 at a dose of 0.05, 0.2, 0.5 or 1 mg/kg for 15 days. The specific levels of the mRNAs of interest were analysed in interscapular brown adipose tissue (BAT) and in two white adipose tissue (WAT) depots, inguinal (IWAT) and epididymal (EWAT). RESULTS: No changes in food intake or body weight were detected at any dose of CGP-12177. In the two WAT depots, the treatment led to enhanced expression of ucp1 and ucp3, but not of ucp2. In BAT, low doses (0.05 and 0.2 mg/kg) led to a decreased expression of the three ucp genes, whereas a slight stimulatory effect on the three ucp genes was elicited with a high dose (1 mg/kg). Treated animals displayed increased expression of leptin in BAT and, to a lesser extent, in IWAT, but not in EWAT. CONCLUSION: The results reveal that simultaneous stimulation of the expression of certain ucp genes and the leptin gene can be achieved, and suggest that adrenergic regulation of the leptin gene and of genes of the ucp family in adipose tissues is the result of complex interactions between the different beta-AR pathways.  相似文献   

7.
This study was performed to compare the expression of key proteins [lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), complement 3 (C3), and peroxisome proliferator-stimulated receptor-gamma (PPAR gamma)] involved in sc abdominal adipose tissue (AT) metabolism of young (n = 13) vs. middle-aged (n = 16) men. The sc abdominal AT-LPL activity as well as fat cell lipolysis were also measured in both groups of men. Young and middle-aged men displayed similar body weight and sc abdominal fat accumulation, measured by computed tomography. However, middle-aged men were characterized by a higher percent body fat (28 +/- 5% vs. 22 +/- 7%; P < 0.05) than young subjects. No difference between groups was observed in sc abdominal adipose tissue LPL activity. On the other hand, maximal lipolytic responses of sc abdominal adipocytes to isoproterenol (beta-adrenergic agonist) or to postadrenoceptor agents such as dibutyryl cAMP, forskolin, and theophylline were lower in middle-aged than in young men (P < 0.05). AT-LPL messenger ribonucleic acid (mRNA) levels were similar regardless of the subject's age. However, HSL, C3, and PPAR gamma mRNA levels were higher in middle-aged than in young individuals (P < 0.01-0.05). After correction for percent body fat, only HSL and C3 mRNA levels remained significantly different between groups (P < 0.05). Taken together, these results suggest that aging has an effect on the up-regulation of HSL and C3 mRNA levels, whereas PPAR gamma expression seems to be related mainly to increased adiposity.  相似文献   

8.
The hypothalamic neurocircuitry that regulates energy homeostasis in adult rats is not fully developed until the third postnatal week. In particular, fibers from the hypothalamic arcuate nucleus, including both neuropeptide Y (NPY) and alpha-MSH fibers, do not begin to innervate downstream hypothalamic targets until the second postnatal week. However, alpha-MSH fibers from the brainstem and melanocortin receptors are present in the hypothalamus at birth. The present study investigated the melanocortin system in the early postnatal period by examining effects of the melanocortin receptor agonist melanotan II (MTII) on body weight, energy expenditure, and hypothalamic NPY expression. Rat pups were injected ip with MTII (3 mg/kg body weight) or saline on postnatal day (P) 5 to P6, P10-P11, or P15-P16 at 1700 and 0900 h and then killed at 1300 h. Stomach weight and brown adipose tissue uncoupling protein 1 mRNA were determined. In addition, we assessed central c-Fos activation 90 min after MTII administration and hypothalamic NPY mRNA after twice daily MTII administration from P5-P10 or P10-P15. MTII induced hypothalamic c-Fos activation as well as attenuating body weight gain in rat pups. Stomach weight was significantly decreased and uncoupling protein 1 mRNA was increased at all ages, indicating decreased food intake and increased energy expenditure, respectively. However, MTII had no effect on NPY mRNA levels in any hypothalamic region. These findings demonstrate that MTII can inhibit food intake and stimulate energy expenditure before the full development of hypothalamic feeding neurocircuitry. These effects do not appear to be mediated by changes in NPY expression.  相似文献   

9.
We recently reported that the leptin-induced increase in uncoupling protein 1 (UCP1) mRNA in brown adipose tissue (BAT) is prevented by the denervation of BAT. We also reported that retinoic acid (RA) increases UCP1 mRNA in BAT. To extend these finding to UCP2 and UCP3 in BAT, we examined UCP2 and UCP3 mRNA after unilateral denervation of BAT, as well as after leptin, beta(3)-adrenergic agonist, RA, and glucocorticoid administration to rats. UCP3 mRNA was 20% less in the denervated compared with the intact BAT, whereas UCP2 mRNA was unchanged with denervation. The beta(3)-adrenergic agonist, CGP-12177 (0.75 mg/kg), increased UPC3 mRNA by 40% in the innervated and by 85% in the denervated BAT. Leptin (0.9 mg/day for 3 days) increased both UCP2 and UCP3 mRNA by 30% in the innervated and, surprisingly, in the denervated BAT. RA (7.5 mg/kg) increased UCP1 mRNA but decreased UCP2 and UCP3 mRNA by 50%, whereas methylprednisolone (65 mg/kg, two doses 24 h apart) suppressed all three uncoupling proteins by greater than 60%. The present findings indicate that: sympathetic innervation is necessary to maintain basal levels of UCP3 mRNA; beta(3)-adrenergic agonist stimulation induces UCP3 mRNA; leptin induces UCP2 and UCP3 mRNA and this induction is not dependent on sympathetic innervation; RA increases UCP1 but decreases UCP2 and UCP3 mRNA; and methylprednisolone suppresses UCP1, UCP2, and UCP3 mRNA equally. These data suggest that there are distinct patterns of regulation between UCP1, UCP2, and UCP3, and there may be at least two modes by which leptin could modulate thermogenesis in BAT; first, by increasing sympathetic stimulation of BAT and induction of UCP1 mRNA and, secondly, by increasing UCP2 and UCP3 mRNA by a mechanism independent of sympathetic stimulation.  相似文献   

10.
Young adult male and female Djungarian hamsters were exposed to ambient temperatures of 23 or 0 C for 12 h; half of the animals in each group were treated with iopanoic acid to suppress the peripheral conversion of T4 to the thermotropically active thyroid hormone T3 by the enzyme 5'-deiodinase (5'D). Brown adipose tissue (BAT) mRNA for uncoupling protein (UCP), BAT lipoprotein lipase (LPL) activity, and 5'D activity were measured at the conclusion of the study. A temperature of 0 C produced large rises in 5'D and LPL activities and a similar large increase in UCP mRNA within the 12-h exposure period. When 5'D activity was inhibited with iopanoic acid, mRNA for UCP was reduced, while LPL activity was unaffected. The results show that the optimal production of mRNA for BAT UCP depends on the availability of T3; however, T3 is not required for the cold-induced activation of LPL activity in BAT.  相似文献   

11.
12.
Uncoupling proteins (UCPs) are mitochondrial proteins that play a role in regulation of energy expenditure by uncoupling respiration from ATP synthesis. Lactation is a physiological condition characterized by negative energy balance due to the loss of energy sources to the production of milk. The objective of the current study was to investigate whether UCP mRNA and protein expressions were altered during lactation compared with those after 48 h of fasting. Lactation significantly reduced serum leptin levels, and removal of pups for 48 h increased serum leptin to higher levels than those observed in control rats. Compared with control rats, mRNA expression of UCP1 and UCP3 in brown adipose tissue (BAT) was dramatically reduced during lactation and fasting. The reduction in mRNAs was reflected by a lowered UCP1 protein level, and to some extent, UCP3 protein. Treatment of lactating rats with exogenous leptin (3 mg/kg) or removal of pups for 48 h completely reversed the down-regulation of UCP1 and UCP3 mRNA expression in BAT, and pup removal led to a recovery of protein expression. In contrast to BAT, UCP3 expression in skeletal muscle was increased in fasted rats and decreased during lactation. Similar changes were observed in serum free fatty acid levels. These changes are consistent with the idea that the utilization of free fatty acids as a fuel source is spared during lactation. As in BAT, leptin treatment and removal of pups were able to restore changes in mRNA expression of UCP3 in skeletal muscle during lactation. The present results suggest that the inhibition of leptin secretion during lactation is involved in the down-regulation of UCP expression in BAT and skeletal muscle, which, in turn, is responsible for the decrease in metabolic fuel oxidation and thermogenesis.  相似文献   

13.
The relationship between interscapular brown adipose tissue (IBAT) thermogenic potential and vitamin A status was investigated by studying the effects of feeding a vitamin A-deficient diet and all-trans retinoic acid (tRA) treatment on body weight and IBAT parameters in mice. Feeding a vitamin A-deficient diet tended to trigger opposite effects to those of tRA treatment, namely increased body weight, IBAT weight, adiposity and leptin mRNA expression, and reduced IBAT thermogenic potential in terms of uncoupling protein 1 (UCP1) mRNA and UCP2 mRNA expression. The results emphasize the importance of retinoids as physiological regulators of brown adipose tissue.  相似文献   

14.
Leptin, the adipocyte-produced hormone that plays a key role in body weight homeostasis, has recently been found to be involved in the regulation of the hypothalamic-pituitary-adrenal axis. Moreover, reciprocal interactions between leptin and glucocorticoids have been described. In the present communication, two different strategies were undertaken to explore the mode of action of leptin in the direct control of rat adrenal function. First, a synthetic peptide approach demonstrated that the inhibitory effect of leptin on basal and ACTH-stimulated corticosterone secretion in vitro is, at least partially, mapped to a domain of the native protein between amino acids 116 and 130, i.e. an area of the molecule also relevant in terms of regulation of food intake and endocrine control. Secondly, semi-quantitative RT-PCR analysis indicated a complex pattern of adrenal leptin receptor (Ob-R) mRNA expression, with predominant expression of the Ob-Ra and Ob-Rb isoforms, as well as moderate levels of the Ob-Rc and Ob-Rf variants, whereas negligible signals for the Ob-Re isoform were detected. Interestingly, such an expression pattern appeared hormonally regulated as exposure to human recombinant leptin (10(-7 )M) or ACTH (10(-7 )M) significantly decreased Ob-R isoform mRNA expression. Indeed, dose-dependent ligand-induced Ob-Ra and Ob-Rb mRNA down-regulation was further confirmed by adrenal stimulation with increasing concentrations (10(-9)-10(-5 )M) of the active leptin fragment, leptin 116-130 amide. Overall, our results provide evidence for a novel regulatory step at the level of Ob-R mRNA expression in the interplay between ACTH and leptin for the tuning of rat adrenal corticosterone secretion. Furthermore, our data showing down-regulation of Ob-R mRNA expression by its cognate ligand may well be relevant to leptin physiology and its alteration in various disease states.  相似文献   

15.
16.
Leptin, the product of the ob gene, is a pivotal signal in the regulation of neuroendocrine function and fertility. Although much of the action of leptin in the control of the reproductive axis is exerted at the hypothalamic level, some direct effects of leptin on male and female gonads have also been reported. Indeed, recent evidence demonstrated that leptin is able to inhibit testosterone secretion at the testicular level. However, the molecular mechanisms behind this effect remain unclear. The focus of this study was twofold: (1) to identify potential targets for leptin-induced inhibition of steroidogenesis, and (2) to characterize in detail the pattern of expression and cellular distribution of leptin receptor (Ob-R) mRNA in adult rat testis. In pursuit of the first goal, slices of testicular tissue from adult rats were incubated with increasing concentrations of recombinant leptin (10(-9)--10(-7 )M) in the presence of human chorionic gonadotropin (hCG; 10 IU/ml). In this setting, testosterone secretion in vitro was monitored, and expression levels of mRNAs encoding steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450 scc) and 17 beta-hydroxysteroid dehydrogenase type III (17 beta-HSD) were assessed by Northern hybridization. In pursuit of the second goal, the pattern of cellular expression of the Ob-R gene in adult rat testis was evaluated by in situ hybridization using a riboprobe complementary to all Ob-R isoforms. In addition, testicular expression levels of the different Ob-R isoforms, previously identified in the hypothalamus, were analyzed by means of semi-quantitative RT-PCR. In keeping with our previous data, recombinant leptin significantly inhibited hCG-stimulated testosterone secretion. In this context, leptin, in a dose-dependent manner, was able to co-ordinately decrease the hCG-stimulated expression levels of SF-1, StAR and P450 scc mRNAs, but it did not affect those of 17 beta-HSD type III. In situ hybridization analysis showed a scattered pattern of cellular expression of the Ob-R gene within the adult rat testis, including Leydig and Sertoli cells. In addition, assessment of the pattern of expression of Ob-R subtypes revealed that the long Ob-Rb isoform was abundantly expressed in adult rat testis. However, variable levels of expression of Ob-Ra, Ob-Re, and Ob-Rf mRNAs were also detected, whereas those of the Ob-Rc variant were nearly negligible. In conclusion, our results indicate that decreased expression of mRNAs encoding several up-stream elements in the steroidogenic pathway may contribute, at least partially, to leptin-induced inhibition of testicular steroidogenesis. In addition, our data on the pattern of testicular expression of Ob-R isoforms and cellular distribution of Ob-R mRNA may help to further elucidate the molecular mechanisms of leptin action in rat testis.  相似文献   

17.
The insulin-like growth factor (IGF) autocrine/paracrine system is believed to play a role in endometrial differentiation and trophoblast growth. The IGFs bind with high affinity to a family of binding proteins (IGFBPs) that regulate the actions of the IGFs at their target cells. IGFBP-1, one of three well-characterized IGFBPs in humans, has been shown by numerous investigators to be present in secretory but not proliferative endometrium; however, no information is available with regard to two other human IGFBPs, IGFBP-2 and IGFBP-3, in normal human endometrium. We have examined expression of the messenger RNAs (mRNAs) encoding IGFBP-2 and IGFBP-3 in human proliferative endometrium [under the influence of estradiol (E2)] compared to secretory endometrium (under the influence of E2 and progesterone). Using a complementary DNA probe specific for IGFBP-2, by Northern analysis, expression of a 1.4 kilobase mRNA was found to be differentially expressed in secretory compared to proliferative phase endometrium. Using a complementary DNA probe encoding IGFBP-3, a 2.4 kilobase mRNA was found in endometrium and was also found to be differentially expressed in secretory compared to proliferative phase endometrium. Endometrial stromal cells were established in culture and revealed constitutive synthesis and secretion of IGFBP-2 and IGFBP-3 into the conditioned medium (CM), as detected by Western ligand blot analysis of the CM. Identification of the IGFBPs in the CM was made using IGFBP-2 and IGFBP-3 specific antiserum. In the presence of E2 and progesterone, there was an enhancement in the amount of IGFBP-3 and a marked enhancement of IGFBP-2 in the conditioned media, suggesting sex steroid-dependence of IGFBP-2 and, to a lesser extent, IGFBP-3 protein synthesis. Western ligand blot analysis of IGFBPs in serum throughout the menstrual cycle revealed no hormonal dependence in the serum IGFBPs, suggesting local action of the IGFBPs in endometrium. These data thus show that mRNAs encoding IGFBP-2 and IGFBP-3 are expressed in human endometrium, that their expression is differentially regulated in secretory compared to proliferative phase endometrium (different steroidogenic environments), and that the synthesis of both IGFBP-2 and IGFBP-3 proteins is regulated by steroid hormones.  相似文献   

18.
Ko C  Grieshaber NA  Ji I  Ji TH 《Endocrinology》2003,144(6):2360-2367
FSH plays crucial roles in differentiation of granulosa cells and development of follicles. Considering the broad scope of FSH effects, a large number of genes are likely responsive to the hormone. However, only a limited number of genes have been identified as FSH-regulated genes, particularly during the preantral stage. In an attempt to better define genes involved in follicular development, we examined primary granulosa cell cultures, an undifferentiated rat ovarian granulosa cell line and rat ovaries, using differential display, quantitative RT-PCR, Northern blot analysis, and in situ hybridization. We report, for the first time, that nicotinamide adenine dinucleotide phosphate-dependent cytosolic T(3)-binding protein mRNA is expressed in the ovary, particularly in the granulosa cell layer of preantral and early antral follicles, but not in large preovulatory follicles. Its expression markedly declines in response to FSH, which is dependent on the period of the exposure. This FSH-responsive down-regulation is dependent on granulosa cell differentiation and follicular development. FSH down-regulates the mRNA via the adenylyl cyclase/cAMP pathway, and the down-regulation requires de novo synthesis of a regulatory protein(s). The cytosolic T(3)-binding protein may play a significant role in the regulation of steroidogenesis and follicular development in the mammalian ovary.  相似文献   

19.
Apelin, the endogenous ligand of the APJ receptor, has been identified in a variety of tissues, including stomach, heart, skeletal muscle, and white adipose tissue. We sought to clarify the effects of apelin on body adiposity and the expression of uncoupling proteins (UCPs) in C57BL/6 mice. Treatment with ip apelin at a dose of 0.1 mumol/kg.d for 14 d decreased the weight of white adipose tissue and serum levels of insulin and triglycerides, compared with controls, without influencing food intake. Apelin treatment also decreased body adiposity and serum levels of insulin and triglycerides in obese mice fed a high-fat diet. Apelin increased the serum adiponectin level and decreased that of leptin. Additionally, apelin treatment increased mRNA expression of UCP1, a marker of peripheral energy expenditure, in brown adipose tissue (BAT) and of UCP3, a regulator of fatty acid export, in skeletal muscle. In addition, immunoblot bands and relative densities of UCP1 content in BAT were also higher in the apelin group than controls. Furthermore, apelin treatment increased body temperature and O(2) consumption and decreased the respiratory quotient. In conclusion, apelin appears to regulate adiposity and lipid metabolism in both lean and obese mice. In addition, apelin regulates insulin resistance by influencing the circulating adiponectin level, the expression of BAT UCP1, and energy expenditure in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号