首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Recently, we examined the neuronal substrate of predictive pursuit during memory-based smooth pursuit and found that supplementary eye fields (SEFs) contain signals coding assessment and memory of visual motion direction, decision not-to-pursue ("no-go"), and preparation for pursuit. To determine whether these signals were unique to the SEF, we examined the discharge of 185 task-related neurons in the caudal frontal eye fields (FEFs) in 2 macaques. Visual motion memory and no-go signals were also present in the caudal FEF but compared with those in the SEF, the percentage of neurons coding these signals was significantly lower. In particular, unlike SEF neurons, directional visual motion responses of caudal FEF neurons decayed exponentially. In contrast, the percentage of neurons coding directional pursuit eye movements was significantly higher in the caudal FEF than in the SEF. Unlike SEF inactivation, muscimol injection into the caudal FEF did not induce direction errors or no-go errors but decreased eye velocity during pursuit causing an inability to compensate for the response delays during sinusoidal pursuit. These results indicate significant differences between the 2 regions in the signals represented and in the effects of chemical inactivation suggesting that the caudal FEF is primarily involved in generating motor commands for smooth-pursuit eye movements.  相似文献   

2.
It has been suggested that the frontal eye field (FEF), which is involved with the inhibition and generation of saccades, is engaged to a different degree in pro- and antisaccades. Pro- and antisaccades are often assessed in separate experimental blocks. In such cases, saccade inhibition is required for antisaccades but not for prosaccades. To more directly assess the role of the FEF in saccade inhibition and generation, a new paradigm was used in which inhibition was necessary on pro- and antisaccade trials. Participants looked in the direction indicated by a target ('<' or '>') that appeared in the left or right visual field. When the pointing direction and the location were congruent, prosaccades were executed; otherwise antisaccades were required. Saccadic latencies were measured in blocks without and with single pulse transcranial magnetic stimulation (TMS) to the right FEF or a right posterior control site. Results showed that antisaccades generated into the hemifield ipsilateral to the TMS were significantly delayed after TMS over the FEF, but not the posterior control site. This result is interpreted in terms of a modulation of saccade inhibition to the contralateral visual field due to disruption of processing in the FEF.  相似文献   

3.
Smooth pursuit eye movements function to keep moving targets foveated. Behavioral studies have shown that pursuit is particularly effective for predictable target motion. There is evidence that both the frontal eye field (FEF) and supplementary eye field (SEF) (also known as the dorsomedial frontal cortex) contribute to pursuit control. The goal of the current experiment was to determine whether these 2 areas made different contributions to the initiation of pursuit in response to predictable compared with unpredictable target motion. Transcranial magnetic stimulation (TMS) was used in 5 healthy human participants to temporarily disrupt each area around the time of target motion onset. TMS over the FEF delayed contraversive pursuit markedly more than ipsiversive pursuit and this direction-dependent difference was more deeply modulated during pursuit of unpredictable than predictable target motion. By contrast, TMS over the SEF resulted in a much more muted modulation of pursuit latency that was similar across both predictable and unpredictable conditions. Taken together, we conclude that the human FEF, but not the SEF, makes a significant contribution to the processing required during the preparation of contraversive pursuit responses to unpredictable target motion and this contribution is less vital during pursuit to predictable target motion.  相似文献   

4.
We tested whether the frontal eye field (FEF) is critical in controlling visual processing in posterior visual brain areas during the orienting of spatial attention. Short trains (5 pulses at 10 Hz) of transcranial magnetic stimulation (TMS) were applied to the right FEF during the cueing period of a covert attentional task while event-related potentials (ERPs) were simultaneously recorded from lateral posterior electrodes, where visual components are prominent. FEF TMS significantly affected the neural activity evoked by visual stimuli, as well as the ongoing neural activity recorded during earlier anticipation of the visual stimuli. The effects of FEF TMS started earlier and were greatest for brain activity recorded ipsilaterally to FEF TMS and contralaterally to the visual stimulus. The TMS-induced effect on visual ERPs occurred at the same time as ERPs were shown to be modulated by visual attention. Importantly, no similar effects were observed after TMS of a control site that was physically closer but not anatomically interconnected to the recording sites. The results show that the human FEF has a causal influence over the modulation of visual activity in posterior areas when attention is being allocated.  相似文献   

5.
Physiological and behavioral data reported here show an involvement of the primate frontal eye field (FEF) cortex in smooth-pursuit eye movements, in addition to its well-established role in saccadic eye movements. Microstimulation just ventral to the small saccade representation of the FEF elicits eye movements that, in contrast to elicited saccades, have low velocities, continue smoothly without interruption during prolonged stimulation, and are usually directed ipsilaterally to the stimulated hemisphere. Neurons in this region respond in association with smooth-pursuit eye movements and visual motion. Tracking deficits following experimental lesions of the FEF depend critically upon the status of this ventral region: superficial lesions sparing it leave smooth-pursuit eye movements intact, whereas lesions removing it produce substantial deficits in the anticipatory initiation, motion-induced acceleration, asymptotic velocity, and predictive continuation of ipsilateral smooth pursuit.  相似文献   

6.
Neurophysiological studies in non-human primates have identified saccade-related neuronal activity in cortical regions including frontal (FEF), supplementary (SEF) and parietal eye fields. Lesion and neuroimaging studies suggest a generally homologous mapping of the oculomotor system in humans; however, a detailed mapping of the precise anatomical location of these functional regions has not yet been achieved. We investigated dorsal frontal and parietal cortex during a saccade task vs. central fixation in 10 adult subjects using functional magnetic resonance imaging (fMRI). The FEF were restricted to the precentral sulcus, and did not extend anteriorly into Brodmann area 8, which has traditionally been viewed as their location in humans. The SEF were located in cortex along the interhemispheric fissure and extended minimally onto the dorsal cortical surface. Parietal activation was seen in precuneus and along the intraparietal sulcus, extending into both superior and inferior parietal lobules. These findings localize areas in frontal and parietal cortex involved in saccade generation in humans, and indicate significant differences from the macaque monkey in both frontal and parietal cortex. These differences may have functional implications for the roles these areas play in visuomotor processes.   相似文献   

7.
The cortical pursuit system begins the process of transforming visual signals into commands for smooth pursuit (SP) eye movements. The frontal eye field (FEF), located in the fundus of arcuate sulcus, is known to play a role in SP and gaze pursuit movements. This role is supported, at least in part, by FEF projections to the rostral nucleus reticularis tegmenti pontis (rNRTP), which in turn projects heavily to the cerebellar vermis. However, the functional characteristics of SP-related FEF neurons that project to rNRTP have never been described. Therefore, we used microelectrical stimulation (ES) to deliver single pulses (50-200 microA, 200-micros duration) in rNRTP to antidromically activate FEF neurons. We estimated the eye or retinal error motion sensitivity (position, velocity, and acceleration) of FEF neurons during SP using multiple linear regression modeling. FEF neurons that projected to rNRTP were most sensitive to eye acceleration. In contrast, FEF neurons not activated following ES of rNRTP were often most sensitive to eye velocity. In similar modeling studies, we found that rNRTP neurons were also biased toward eye acceleration. Therefore, our results suggest that neurons in the FEF-rNRTP pathway carry signals that could play a primary role in initiation of SP.  相似文献   

8.
Together with the frontal and parietal eye fields, the supplementary eye field (SEF) is involved in the performance and control of voluntary and reflexive saccades and of ocular pursuit. This region was first described in non-human primates and is rather well localized on the dorsal surface of the medial frontal cortex. In humans the site of the SEF is still ill-defined. Functional imaging techniques have allowed investigation of the location and function of the SEF. However, there is great variability with regard to the published standardized coordinates of this area. We used here the spatial precision of functional magnetic resonance imaging (fMRI) in order to better localize the SEF in individuals. We identified as the SEF a region on the medial wall that was significantly activated when subjects executed self-paced horizontal saccades in darkness as compared to rest. This region appeared to be predominantly activated in the left hemisphere. We found that, despite a discrepancy of >2 cm found in the standardized Talairach coordinates, the location of this SEF-region could be precisely and reliably described by referring to a sulcal landmark found in each individual: the upper part of the paracentral sulcus.  相似文献   

9.
Recent positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies in humans have localized the frontal eye field (FEF) to the precentral sulcus (PCS). In macaque monkeys, low-threshold microstimulation and single unit recording studies have located a saccadic subregion of FEF in a restricted area along the anterior wall of the arcuate sulcus and a pursuit subregion located deeper in the sulcus close to the fundus. The functional organization and anatomical location of these two FEF subregions are still to be defined in humans. In the present study, we used fMRI with high spatial resolution image acquisition at 3.0 Tesla to map the saccade- and pursuit-related areas of FEF within the two walls of the PCS in 11 subjects. We localized the saccade-related area to the upper portion of the anterior wall of the precentral sulcus and the pursuit-related area to a deeper region along the anterior wall, extending in some subjects to the fundus or deep posterior wall. These findings localize distinct pursuit and saccadic subregions of FEF in humans and demonstrate a high degree of homology in the organization of these FEF subregions in the human and the macaque monkey.  相似文献   

10.
The purpose of this study was to investigate the interaction between internal representations of invisible moving targets and visual responses of neurons in frontal eye fields (FEFs). Monkeys were trained to make saccades to the extrapolated position of a target that was temporarily rendered invisible for variable durations as if it had passed behind an occluder. Flashed, task-irrelevant visual probe stimuli were used to study the visual responsiveness of FEF neurons during this task. Probes were flashed at various times and locations during the occlusion interval. Net changes in neuronal activity were obtained by comparing the activity on trials with probes with randomly interleaved trials without any probe. Most neurons showed an increase in firing rate in response to the probe, but some showed a decrease. Both types of responses were enhanced when the invisible target moved toward the receptive field (RF) as compared with trials on which the target moved away from the RF. Some neurons showed a spatial shift in the visual response during the occlusion interval. For cells that were excited by the probe, the shift tended to be correlated with the direction of motion of the target, whereas for cells that were inhibited the shift tended to be in the opposite direction. These results suggest that the role of FEF in predicting invisible target motion includes a sensory/perceptual component.  相似文献   

11.
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level-dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1-V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1-V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex.  相似文献   

12.
Cortical mechanisms for shifting and holding visuospatial attention   总被引:2,自引:0,他引:2  
Access to visual awareness is often determined by covert, voluntary deployments of visual attention. Voluntary orienting without eye movements requires decoupling attention from the locus of fixation, a shift to the desired location, and maintenance of attention at that location. We used event-related functional magnetic resonance imaging to dissociate these components while observers shifted attention among 3 streams of letters and digits, one located at fixation and 2 in the periphery. Compared with holding attention at the current location, shifting attention between the peripheral locations was associated with transient increases in neural activity in the superior parietal lobule (SPL) and frontal eye fields (FEF), as in previous studies. The supplementary eye fields and separate portions of SPL and FEF were more active for decoupling attention from fixation than for shifting attention to a new location. Large segments of precentral sulcus (PreCS) and posterior parietal cortex (PPC) were more active when attention was maintained in the periphery than when it was maintained at fixation. We conclude that distinct subcomponents of the dorsal frontoparietal network initiate redeployments of covert attention to new locations and disengage attention from fixation, while sustained activity in lateral regions of PPC and PreCS represents sustained states of peripheral attention.  相似文献   

13.
Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronously with the same visual angle. FEF neurons responding to this gaze-pursuit were tested for eye-pursuit of target motion while the feeder was stationary and for head-pursuit while the target was stationary. The majority of pursuit neurons exhibited modulation during head-pursuit, but their preferred directions during eye-pursuit and head-pursuit were different. Although peak modulation occurred during head movements, the onset of discharge usually was not aligned with the head movement onset. The minority of neurons whose discharge onset was so aligned discharged after the head movement onset. These results do not support the idea that the head-pursuit-related modulation reflects head-pursuit commands. Furthermore, modulation similar to that during head-pursuit was obtained by passive head rotation on stationary trunk. Our results suggest that FEF pursuit neurons issue gaze or eye movement commands during gaze-pursuit and that the head-pursuit-related modulation primarily reflects reafferent signals resulting from head movements.  相似文献   

14.
Smooth pursuit eye movements are used to continuously track slowly moving visual objects. A peculiar property of the smooth pursuit system is the nonlinear increase in sensitivity to changes in target motion with increasing pursuit velocities. We investigated the role of the frontal eye fields (FEFs) in this dynamic gain control mechanism by application of transcranial magnetic stimulation. Subjects were required to pursue a slowly moving visual target whose motion consisted of 2 components: a constant velocity component at 4 different velocities (0, 8, 16, and 24 deg/s) and a superimposed high-frequency sinusoidal oscillation (4 Hz, +/-8 deg/s). Magnetic stimulation of the FEFs reduced not only the overall gain of the system, but also the efficacy of the dynamic gain control. We thus provide the first direct evidence that the FEF population is significantly involved in the nonlinear computation necessary for continuously adjusting the feedforward gain of the pursuit system. We discuss this with relation to current models of smooth pursuit.  相似文献   

15.
We perceive a stable outside world despite the constant changes of visual input induced by our eye movements. Internal monitoring of a corollary discharge associated with oculomotor commands may help to anticipate the perceptual consequences of impending eye movements. The primate frontal eye fields have repeatedly been presumed to participate in the maintenance of perceptual stability across eye movements. However, a direct link between integrity of frontal oculomotor areas and perceptual stability is missing so far. Here, we show that transcranial magnetic stimulation (TMS) over the right human frontal cortex impairs the integration of visual space across eye movements. We asked 9 healthy subjects to report the direction of transsaccadic stimulus displacements and applied TMS before the actual experiment in a novel offline stimulation protocol, continuous theta-burst stimulation (cTBS). A systematic perceptual distortion was observed after stimulation over the right frontal cortex that was best explained by an internal underestimation of executed eye movement amplitudes. cTBS apparently disturbed an internal prediction process for contraversive saccades, while the metrics of associated oculomotor actions remained unchanged. Our findings suggest an important role of the frontal cortex in the internal monitoring of oculomotor actions for the perceptual integration of space across eye movements.  相似文献   

16.
The role of area 7a in eye-hand movement was studied by recording from individual neurons while monkeys performed 7 different tasks, aimed at assessing the relative influence of retinal, eye, and hand information on neural activity. Parietal cell activity was modulated by visuospatial signals about target location, as well as by information concerning eye and/or hand movement, and position. The highest activity was elicited when the hand moved to the fixation point. The population activities across different memory tasks showed common temporal peaks when aligned to the visual instruction (visuospatial peak) or Go signal (motor peak) for eye, hand, and coordinated eye-hand movement. The motor peak was higher for coordinated eye-hand movement, and it was absent in a No-Go task. Two activation maxima were also observed during visual reaching. They had the same latency of the visuospatial and motor peaks seen in the memory tasks. Therefore, area 7a seems to operate through a common neural mechanism underlying eye, hand, or combined eye-hand movement. This mechanism is revealed by invariant temporal activity profiles and is independent from the effector selected and from the presence or absence of a visible target during movement. For comparative purposes, we have studied the temporal evolution of the population activity in the superior parietal lobule (SPL) during the same reaching tasks and during a saccade task. In SPL, the population activity was characterized by a single peak, time locked to the Go signal for eye, hand, or combined eye-hand movement. As in IPL, the time of occurrence of this peak was effector independent. The population activity remained unchanged when the position of the eye changed, suggesting that SPL is mostly devoted to the hand motor behavior.  相似文献   

17.
The premotor theory of attention suggests that target processing and generation of a saccade to the target are interdependent. Temporally precise transcranial magnetic stimulation (TMS) was delivered over the human frontal eye fields, the area most frequently associated with the premotor theory in association with eye movements, while subjects performed a visually instructed pro-/antisaccade task. Visual analysis and saccade preparation were clearly separated in time, as indicated by 2 distinct time points of TMS delivery that resulted in elevated saccade latencies. These results show that visual analysis and saccade preparation, although frequently enacted together, are dissociable processes.  相似文献   

18.
A previous positron emission tomography study that investigated the cortical areas involved in directing eye movements during text reading showed two areas of extra-occipital asymmetry: left > right posterior parietal cortex (PPC), and right > left frontal eye-field (FEF). We used the temporal resolution of repetitive TMS (rTMS) to isolate the contributions of the left and right PPC and FEF to the planning and execution of rightward reading saccades. We present eye-movement data collected during text reading, which involves the initiation and maintenance of a series of saccades (scanpath). rTMS over the left but not right PPC slowed reading speeds for the whole array of words, indicating that this area is involved throughout the scanpath. rTMS over the right but not the left FEF slowed the time to make the first saccade, but only when triggered before the stimuli appeared, demonstrating that the role of this region is in the preparation of the scanpath. Our results are compatible with the hypotheses that the left PPC maintains reading saccades along a line of text while the right FEF is involved in the preparation of the motor plan for the scanpath at the start of each new line of text.  相似文献   

19.
INTRODUCTION: The depth of sedation required for patients in critical care units varies over time and should be subject to control. The clinical assessment scales used at present are inadequate, and several electroencephalographic variables have been investigated in recent years with the aim of quantifying depth of sedation. One such variable is the spectral edge frequency 90 (SEF90). OBJECTIVES: To establish the correlation between SEF90 and the Ramsay score as indicators of depth of sedation. To estimate the ability of SEF90 to predict sedation and a patient's hemodynamic response during aspiration of secretions through the orotracheal tube. PATIENTS AND METHODS: Patients in a surgical intensive care unit. The ability of SEF90 to predict a certain Ramsay score was assessed by logistic regression. We also calculated the predictive probability (Pk) of SEF90 for the appearance of hemodynamic change and of movement in the event of endotracheal aspiration. RESULTS: When SEF90 was < 16 Hz, the probability of a Ramsay score >= 4 was >= 90% (Pk = 0.91). Neither SEF90 nor the Ramsay score predicted hemodynamic response to orotracheal aspiration. CONCLUSIONS: SEF90 distinguishes superficial from deep sedation but does not differentiate further degrees of depth or the likelihood of hemodynamic instability or movement in response to aspiration.  相似文献   

20.
The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex. Stimulus-response curves were constructed by recording the intensity of the reported phosphenes evoked in the contralateral visual field at range of TMS intensities. Phosphene measurements revealed that MD produced a rapid and robust decrease in cortical excitability relative to a control condition without MD. The cortical excitability returned to preinterventional baseline levels within 3 h after the end of MD. The results show that in contrast to the excitability increase in response to BD, MD acutely triggers a reversible decrease in visual cortical excitability. This shows that the pattern of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号