首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  RNA 3 of alfalfa mosaic virus (AMV) encodes the 5′-proximal movement protein (MP) gene and the 3′-proximal coat protein (CP) gene which is expressed from a subgenomic RNA. Several strategies were explored to use this RNA as a vector for expression of the green fluorescent protein (GFP) in Nicotiana tabaccum plants expressing the viral polymerase proteins P1 and P2 (P12 plants). Insertion of a subgenomic promoter (sgp)-GFP cassette between the CP gene and the 3′-untranslated region (UTR) interfered with RNA accumulation in protoplasts, indicating that cis-acting sequences required for replication were disrupted. When GFP was fused to the N-terminus of MP or CP, the chimeric RNAs accumulated in protoplasts but cell-to-cell movement in plants was blocked. Insertion of a GFP-sgp cassette immediately upstream of the CP gene caused a hypersensitive host response. However, insertion of a GFP-sgp cassette upstream of the MP gene did not affect symptom formation and yielded a vector that expressed GFP in inoculated but not in the systemic leaves of both P12 tobacco and non-transgenic N. benthamina plants. When the size of the GFP gene was reduced from 700 to 300 nucleotides, virus infection was observed in the non-inoculated leaves. Analysis of the progeny of some chimera revealed novel data on replication, encapsidation and recombination of AMV RNA 3. Received August 7, 2000 Accepted December 18, 2000  相似文献   

2.
Summary.  Transgenic plants harboring various plant virus sequences have shown resistance to viral infections. An environmental risk associated with the use of these plants is the possibility of forming a novel virus by recombination between challenging viruses and transgenic viral mRNA. Two experiments were designed using tobacco mosaic virus (TMV) vectors and transgenic Nicotiana benthamiana to determine if recombinant viral RNA would be detectable. N. benthamiana was transformed with a nontranslatable portion of a TMV viral vector including part of the replicase gene, the movement protein gene, a gene for green fluorescent protein (GFP), and the coat protein gene. When transformed plants were inoculated with a TMV vector coat protein mutant which could not move efficiently through the host, recombinant RNA was detected in 32% of the infected plants, although virions were not detected. When transformed plants were infected with a TMV vector with a normal coat sequence but three base changes in the GFP sequence, no recombinant RNA or virions were detected. Thus, recombinant RNA between TMV RNA and host mRNA did not accumulate to detectable levels under nonselective conditions, and though recombinant RNA did accumulate in the presence of selective pressure, an encapsidated recombinant viral population did not develop. Received September 2, 1999/Accepted March 13, 2000  相似文献   

3.
S Gal  B Pisan  T Hohn  N Grimsley  B Hohn 《Virology》1992,187(2):525-533
Intermolecular reconstitution of a plant virus has been detected in whole plants in a system using a defective cauliflower mosaic virus genome and transgenic host plants containing the missing viral gene. The information for the gene VI protein of the virus was integrated into the chromosome of host Brassica napus plants and leaves of these plants were inoculated with Agrobacterium tumefaciens containing the complementing viral sequences. In several cases, upper leaves contained replicating viral DNA which was able to incite CaMV symptoms on turnip plants. The sequence of the resultant recombinant viral molecules suggested that both DNA and RNA recombination events may have been involved in the production of functional virus, one event being gene targeting of the T-DNA.  相似文献   

4.
5.
Summary Isolated protoplasts from the first leaf mesophyll of cucumber plants have been successfully infectedin vitro with cucumber mosaic virus (CMV). Virus instability before, during and after inoculation of the protoplasts resulted in low infectivities when extracts were assayed on cowpea; however, viral RNA extraction improved the bioassay technique. Attempts to optimizo inoculation and incubation of protoplasts are outlined, incorporating the improved assay.  相似文献   

6.
X J Wu  R N Beachy  T M Wilson  J G Shaw 《Virology》1990,179(2):893-895
The uncoating of tobacco mosaic virus (TMV) particles in protoplasts isolated from leaves of transgenic tobacco plants that express the TMV coat protein gene was investigated. Extracts of these protoplasts collected up to 1 hr after inoculation with TMV contained fewer of the complexes ("striposomes") thought to be involved in cotranslational disassembly of virus particles than did extracts of protoplasts that do not express the viral coat protein gene. These results are consistent with the hypothesis that TMV coat protein-mediated resistance is at least in part the result of inhibition of the uncoating of the virus particles in the inoculum.  相似文献   

7.
8.
Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.  相似文献   

9.
Ryabov EV  Robinson DJ  Taliansky M 《Virology》2001,288(2):391-400
The proteins encoded by open reading frame 3 (ORF3) of the umbraviruses pea enation mosaic virus-2 and tobacco mottle virus, like that of groundnut rosette virus, mediated the movement of viral RNA through the phloem of infected Nicotiana benthamiana or N. clevelandii plants when they were expressed from chimeric tobacco mosaic virus in place of the coat protein. However, these chimeras did not move systemically in N. tabacum. In lysates of N. benthamiana or N. tabacum protoplasts, the chimeric RNAs were more stable than was RNA of tobacco mosaic virus lacking the coat protein gene. The chimeric viruses also protected the latter in trans, suggesting that the ORF3 proteins can increase the stability of heterologous viral RNA. Umbraviral ORF3 proteins contain a conserved arginine-rich domain, and the possible roles of this motif in the functions of the proteins are discussed.  相似文献   

10.
Lettuce infectious yellows virus (LIYV), the type member of the genus Crinivirus in the family Closteroviridae, is specifically transmitted by the sweet potato whitefly (Bemisia tabaci) in a semipersistent manner. LIYV infections result in a low virus titer in plants and protoplasts, impeding reverse genetic efforts to analyze LIYV gene/protein functions. We found that synergistic interactions occurred in mixed infections of LIYV and Turnip mosaic virus (TuMV) in Nicotiana benthamiana plants, and these resulted in enhanced accumulation of LIYV. Furthermore, we examined the ability of transgenic plants and protoplasts expressing only the TuMV P1/HC-Pro sequence to enhance the accumulation of LIYV. LIYV RNA and protein titers increased by as much as 8-fold in these plants and protoplasts relative to control plants. LIYV infections remained phloem-limited in P1/HC-Pro transgenic plants, suggesting that enhanced accumulation of LIYV in these plants was due primarily to increased replication efficiency, not to greater spread.  相似文献   

11.
12.
Rao AL 《Archives of virology》2006,151(4):721-733
Summary. The replication competence of a series of brome mosaic virus (BMV) RNA1 variants with defined mutations in the 3′ tRNA-like structure, previously characterized in vitro to be defective in minus-strand synthesis and several tRNA-associated functions, was analyzed in barley protoplasts. Inocula containing wild type RNAs2 and 3 and RNA1 bearing either Δknob or 5′Psk mutation failed to replicate. Two additional RNA1 variants, each bearing either M4 or 5′AGA mutation, resulted in detectable accumulation of progeny but are inhibitory to overall viral replication when supplied in high concentrations. Another aminoacylation-defective mutation Δ5′ supported viral replication but did not interfere with viral replication even at higher concentrations. Coinoculation of replication-incompetent variants of RNAl with wt RNAs2 and 3 to Chenopodium hybridum plants resulted in the delayed development of local necrotic lesions characteristic of a wt infection. Sequence analysis of progeny RNA recovered from these lesions indicated that, in each case, a functional 3′ noncoding sequence was restored due to homologous recombination with a corresponding sequence from wt RNA3. Taken together the results suggest that, unlike protein 2a which is required in catalytic amounts, the intrinsic involvement of protein 1a at various stages of virus infection cycle demands its sustained synthesis.  相似文献   

13.
Summary.  Species of three viral genera infecting Ornithogalum thyrsoides plants showing mosaic symptoms were identified using RT-PCR and degenerate universal primers for each viral genus. The DNA fragments obtained encoded the coat protein (CP) gene and were sequenced. The plants were found to be infected with one or other of three potyvirus species, one of them was Ornithogalum mosaic virus (OrMV). The other two viruses were previously unrecorded and were named Ornithogalum virus 2 (OV-2) and 3 (OV-3). Direct comparison and phylogenetic analysis with published OrMV isolates revealed that the CP of the three OrMV-like clones were more similar to Pterostylis virus Y (PtVY) than to OrMV. No carlavirus or potexvirus was isolated. Received February 26, 2002; accepted November 29, 2002  相似文献   

14.
We previously described interviral recombinant RNAs derived from a chimeric virus having RNAs 1 and 2 of cucumber mosaic virus (CMV) with RNA 3 from the related tomato aspermy virus (TAV) and the 2b gene from either TAV or another strain of CMV. Here, we show that these interviral recombinant RNAs 3 were stable in the infected plants and could co-exist with their wild-type parental viral RNAs in the same plants, but their de novo generations were inhibited in the presence of the wild-type parental viral RNAs. The recombinant viral genomes did not prevent the replication of other viral RNAs or vice versa, but one of the interviral recombinant viruses induced different symptoms in Physalis floridana from those induced by the parental chimeric virus without the interviral RNA 3 recombinant. Factors such as the nature of the 2b gene and/or the presence or absence of competing wild-type parental RNAs influenced the generation of the recombinant RNAs described. Our data provide additional mechanistic insight into generation, stabilization and competition of recombinant viral RNA in infected host plants.  相似文献   

15.
16.
J C Register  R N Beachy 《Virology》1989,173(2):656-663
To address the mechanism(s) of protection against tobacco mosaic virus (TMV) infection conferred by expression of the TMV capsid protein (CP) gene in transgenic tobacco plants, a transient protection assay has been developed. Introduction of either purified viral CP or virus inactivated by ultraviolet irradiation into tobacco protoplasts induced a transient protection to challenge virus introduced concomitantly or shortly thereafter. The transient protection was characterized and the effects of different aggregation states of TMV CP were tested in the transient assay system. Tobacco mosaic virus CP preparations composed largely of helical, virus-like, aggregates conferred a less transient protection against TMV and greater protection against a distantly related virus than did preparations composed primarily of smaller aggregates.  相似文献   

17.
Brome mosaic virus (BMV) and Spring beauty latent virus (SBLV) are closely related, tripartite RNA plant viruses. In Arabidopsis thaliana, BMV shows limited multiplication whereas SBLV efficiently multiplies. Such distinct multiplication abilities have been observed commonly in all Arabidopsis accessions tested. We used this model system to analyze the molecular mechanism of viral resistance in plants at the species level. Unlike SBLV, BMV multiplication was limited even in protoplasts and a reassortment assay indicated that at least viral RNA1 and/or RNA2 determine such distinct infectivities. By screening Arabidopsis mutants with altered defense responses, we found that BMV multiplies efficiently in cpr5-2 mutant plants. This mutation specifically enhanced BMV multiplication in protoplasts, which depended on the functions of RNA1 and RNA2. In the experiment using DNA vectors to express BMV replication proteins encoded by RNA1 and RNA2, BMV RNA3 accumulation in cpr5-2 protoplasts was similar to that in wild-type Col-0 protoplasts, despite significant reduction of accumulation levels of replication proteins, suggesting that cpr5-2 mutation could enhance BMV multiplication independently of increased accumulation, therefore enhanced translation and stabilization, of the replication proteins.  相似文献   

18.
E J Anderson  S G Qui  J E Schoelz 《Virology》1991,181(2):647-655
Cauliflower mosaic virus (CaMV) strains CM1841 and W260 produced markedly different symptoms when inoculated onto turnips (Brassica campestris L. 'Just Right'). The CM1841 strain induced a mild degree of stunting of infected plants while strain W260 caused moderate to severe stunting. Although CM1841 was significantly milder than W260, it accumulated to a significantly higher concentration than W260 in systemically infected leaves. We constructed a series of hybrid viruses in order to map regions of W260 responsible for enhanced disease severity relative to CM1841 and to map regions of CM1841 responsible for higher virus accumulation. We found that the characteristic degree of stunting caused by a CaMV isolate is determined in a complex manner by viral genes that influence viral gene expression and viral genes that disrupt host metabolism. Genes I and VI influenced both virus concentration and stunting severity, suggesting that these regions affected disease severity primarily through their effect on gene expression. In addition, an interaction between genes IV and VI was observed which further indicated that stunting severity was influenced by differential accumulation of virus. In contrast, three regions of W260 influenced the stunting phenotype but had no effect, or a negative effect, on virus concentration. The three regions contained (1) portions of genes II and III, (2) gene IV, independent of gene VI, and (3) the 3' half of gene V and the 19 S promoter. These regions may influence stunting severity primarily by disrupting host metabolism. Additionally, some of the chimeric viruses induced systemic necrosis on leaves, a symptom that is not characteristic of either CM1841 or W260. The necrotic flecking symptom was caused by an interaction between a W260 DNA segment containing gene I and the 5' half of gene II and a CM1841 DNA segment containing the 3' half of gene II, gene III, and gene IV.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号