首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Our previous studies have defined reactive stroma in human prostate cancer and have developed the differential reactive stroma (DRS) xenograft model to evaluate mechanisms of how reactive stroma promotes carcinoma tumorigenesis. Analysis of several normal human prostate stromal cell lines in the DRS model showed that some rapidly promoted LNCaP prostate carcinoma cell tumorigenesis and others had no effect. These differential effects were due, in part, to elevated angiogenesis and were transforming growth factor (TGF)-beta1 mediated. The present study was conducted to identify and evaluate candidate genes expressed in prostate stromal cells responsible for this differential tumor-promoting activity. Differential cDNA microarray analyses showed that connective tissue growth factor (CTGF) was expressed at low levels in nontumor-promoting prostate stromal cells and was constitutively expressed in tumor-promoting prostate stromal cells. TGF-beta1 stimulated CTGF message expression in nontumor-promoting prostate stromal cells. To evaluate the role of stromal-expressed CTGF in tumor progression, either engineered mouse prostate stromal fibroblasts expressing retroviral-introduced CTGF or 3T3 fibroblasts engineered with mifepristone-regulated CTGF were combined with LNCaP human prostate cancer cells in the DRS xenograft tumor model under different extracellular matrix conditions. Expression of CTGF in tumor-reactive stroma induced significant increases in microvessel density and xenograft tumor growth under several conditions tested. These data suggest that CTGF is a downstream mediator of TGF-beta1 action in cancer-associated reactive stroma and is likely to be one of the key regulators of angiogenesis in the tumor-reactive stromal microenvironment.  相似文献   

2.
Human prostate cancer is associated with a reactive stroma typified by an increase in the proportion of myofibroblast type cells and elevated synthesis of extracellular matrix proteins. Increased vascular density has been identified in the reactive stroma compartment adjacent to both precancerous and cancerous prostate lesions. The differential reactive stroma (DRS) prostate cancer xenograft model has been developed to investigate the role of reactive stroma in prostate cancer progression. Using this model, we have shown that human prostate stromal cells promote angiogenesis and growth of LNCaP human prostate carcinoma cell tumors, and that these increases are transforming growth factor (TGF) beta1 regulated. Our laboratory isolated and identified previously the ps20 protein (WFDC1 gene) as a prostate stromal cell secreted protein. The ps20 protein contains a whey acidic protein-type four-disulfide core domain, which is a functional motif characterized by serine protease inhibition activity in a number of whey acidic protein domain-containing proteins. In the present study, we show ps20 expression by normal human prostate stromal smooth muscle cells and vascular smooth muscle cells indicating a possible role of ps20 in vessel wall biology. Using in vitro assays, we show that ps20 promotes endothelial cell motility but has no effect on endothelial cell proliferation. To address the potential effects of ps20 in a tumor microenvironment, we used the DRS model to evaluate both angiogenesis and tumorigenesis of tumors generated under either ps20 or control conditions. DRS tumors generated with LNCaP and human prostate stromal cells in the presence of ps20 showed a 67% increase in microvessel density compared with control tumors. Elevated DRS tumor growth in the ps20-treated tumors was reflected by a 29% increase in wet weight and a 58% increase in volume compared with controls. Similar tumors composed of GeneSwitch-3T3 cells engineered to express ps20-V5-His under mifepristone regulation showed a 129% increase in microvessel density after induction of ps20-V5-His. GeneSwitch-3T3 cells expressing ps20-V5-His were localized to vessel walls in a mural cell (pericyte) position indicating a possible direct stabilizing interaction with endothelial cells. In addition, we show that ps20 mRNA synthesis is induced by TGF-beta1, a known regulator of endothelial cell-pericyte interactions and of stromal cell-induced angiogenesis in DRS tumors. These findings suggest that ps20 may be a TGF-beta1-induced regulator of angiogenesis that functions by either promoting endothelial cell migration or by contributing to pericyte stabilization of newly formed vascular structures.  相似文献   

3.
4.
Reactive stroma has been reported in many cancers, including breast, colon,and prostate. Although changes in stromal cell phenotype and extracellular matrix have been reported, specific mechanisms of how reactive stroma affects tumor progression are not understood. To address the role of stromal cells in differential regulation of tumor incidence, growth rate, and angiogenesis, LNCaP xenograft tumors were constructed in nude mice with five different human prostate stromal cell lines as well as GeneSwitch-3T3 cells engineered to express lacZ under mifepristone regulation. Alone, LNCaP prostate carcinoma cells were essentially nontumorigenic, whereas combinations of LNCaP cells with three different human prostate stromal cell lines (L/S tumors) resulted in a tumor incidence (50-63%) similar to that of control LNCaP plus Matrigel (L/M) tumors over a 9-week period. In contrast, LNCaP combinations with two other human prostate stromal cell lines were nontumorigenic, illustrating that stromal cell effects are differential. L/S tumors exhibited well-developed blood vessels at 2 weeks, whereas control L/M tumors were avascular at 2 weeks and exhibited blood lakes in lieu of extensive vessels at later time points. Xenografts constructed under three-way conditions (LNCaP, Matrigel, and stromal cells; L/M/S tumors) exhibited a 100% tumor incidence and showed rapid blood vessel formation as early as day 7 with mature vessels formed by day 10. L/M/S tumors exhibited a 10.3-fold increase in microvessel density, and the corresponding hemoglobin:tumor weight ratio was increased 2-fold relative to L/M control tumors at day 10. L/M/S tumor wet weight and volume increased by 1.6- and 2.4-fold, respectively, by day 21, compared with control L/M tumors. L/M/S tumors made with LNCaP cells plus GeneSwitch-3T3-pGene/lacZ stromal cells showed similar results. Mifepristone-regulated gene expression was observed in stromal cells immediately adjacent to clusters of carcinoma cells and in vessel walls in a mural cell (pericyte) position. This study shows that regulation of angiogenesis is one mechanism through which stromal cells affect LNCaP tumor incidence and growth rate. This regulation may be mediated through direct recruitment and interactions of stromal cells with endothelial cells. Furthermore, this study describes for the first time a model system with regulated transgene expression in the stromal compartment of an experimental carcinoma. These findings point to the stromal compartment as a potential source of new prognostic markers and therapeutic targets and show the utility of the carcinoma-stromal xenograft model system in dissecting specific mechanisms of reactive stroma.  相似文献   

5.
We have shown previously that reactive stroma promotes angiogenesis and growth of LNCaP human prostate tumors in the differential reactive stroma xenograft model. Regulators of reactive stroma are not known, but transforming growth factor (TGF)-beta1 is a likely candidate. Three-way differential reactive stroma tumors were generated in the presence of TGF-beta1 latency-associated peptide (LAP) or TGF-beta1 neutralizing antibody. Tumors treated with either of those TGF-beta inhibitors exhibited a reduction in blood vessels, and blood lakes were observed in some areas. The microvessel density of LAP-treated tumors was decreased 3.5-fold relative to control tumors. Moreover, the average wet-weight of LAP-treated tumors was reduced 46% compared with control tumors. The results of this study suggest that TGF-beta regulates reactive stroma and its ability to promote angiogenesis and tumor growth.  相似文献   

6.
Transforming growth factor (TGF)-beta is an important paracrine factor in tumorigenesis. Ligand binding of the type I and II TGF-beta receptors initiate downstream signaling. The role of stromal TGF-beta signaling in prostate cancer progression is unknown. In mice, the conditional stromal knockout of the TGF-beta type II receptor expression (Tgfbr2(fspKO)) resulted in the development of prostatic intraepithelial neoplasia and progression to adenocarcinoma within 7 months. Clinically, we observed a loss of TGF-beta receptor type II expression in 69% of human prostate cancer-associated stroma, compared to 15% of stroma associated with benign tissues (n=140, P-value <0.0001). To investigate the mechanism of paracrine TGF-beta signaling in prostate cancer progression, we compared the effect of the prostatic stromal cells from Tgfbr2(fspKO) and floxed TGF-beta type II receptor Tgfbr2(floxE2/floxE2) mice on LNCaP human prostate cancer cells in vitro and tissue recombination xenografts. Induction of LNCaP cell proliferation and tumorigenesis was observed by Tgfbr2(fspKO) prostate stroma as a result of elevated Wnt3a expression. Neutralizing antibodies to Wnt3a reversed LNCaP tumorigenesis. The TGF-beta inhibition of Wnt3a expression was in part through the suppression of Stat3 activity on the Wnt3a promoter. In conclusion, the frequent loss of stromal TGF-beta type II receptor expression in human prostate cancer can relieve the paracrine suppression of Wnt3a expression.  相似文献   

7.
Zhu B  Fukada K  Zhu H  Kyprianou N 《Cancer research》2006,66(17):8640-8647
A proteomic analysis was pursued to identify new signaling effectors of transforming growth factor beta1 (TGF-beta1) that serve as potential intracellular effectors of its apoptotic action in human prostate cancer cells. The androgen-sensitive and TGF-beta-responsive human prostate cancer cells, LNCaP T beta RII, were used as in vitro model. In response to TGF-beta, significant posttranslational changes in two proteins temporally preceded apoptotic cell death. TGF-beta mediated the nuclear export of prohibitin, a protein involved in androgen-regulated prostate growth, to the cytosol in the LNCaP T beta RII cells. Cofilin, a protein involved in actin depolymerization, cell motility, and apoptosis, was found to undergo mitochondrial translocation in response to TGF-beta before cytochrome c release. Loss-of-function approaches (small interfering RNA) to silence prohibitin expression revealed a modest decrease in the apoptotic response to TGF-beta and a significant suppression in TGF-beta-induced cell migration. Silencing Smad4 showed that the cellular localization changes associated with prohibitin and cofilin action in response to TGF-beta are independent of Smad4 intracellular signaling.  相似文献   

8.
PURPOSE: The purpose of this study was to investigate the potential role of Smad3, a key mediator of transforming growth factor-beta signaling, in progression of prostate cancer. EXPERIMENTAL DESIGN: Expression of Smad proteins was determined in human prostate cancer tissue array and cell lines. Growth and metastasis of cells overexpressing dominant-negative Smad3 (Smad3D) were studied to determine its role in tumor progression in mice. Cell growth, apoptosis, and expression of angiogenic molecules in tumor lesions were studied to determine potential pathways that Smad3 promotes tumor progression. RESULTS: Smad3 was overexpressed in human prostate cancer, which correlated with Gleason score and expression of proliferating cell nuclear antigen. Androgen-independent PC-3MM2 and DU145 cells expressed much higher levels of Smad3 than did androgen-dependent LNCaP, 22Rv1, and LAPC-4 cells. Overexpression of Smad3D in PC-3MM2 cells (PC-3MM2-Smad3D) had minimal direct effects on cell growth but attenuated effects of transforming growth factor-beta1 on gene expression and cell growth. Overexpression of Smad3D did not significantly alter tumor incidence but reduced tumor growth rate and metastasis incidence. Most cells in the control tumors, but not PC-3MM2-Smad3D tumors, were positively stained by an antibody to proliferating cell nuclear antigen. Microvessels and expression of angiogenic molecule interleukin-8 were significantly reduced in tumors from PC-3MM2-Smad3D cells. PC-3MM2-Smad3D tumors also expressed lower levels of vascular endothelial growth factor and platelet-derived growth factor. CONCLUSIONS: These data suggest that Smad3, through regulating angiogenic molecule expression in tumor cells, is critical for progression of human prostate cancer.  相似文献   

9.
BACKGROUND: The action of transforming growth factor beta (TGF-beta) is mediated through type 1 (TbetaRI) and type 2 (TbetaRII) receptors. Prostate cancer cells are often resistant to TGF-beta signaling due to loss of TbetaRII expression. The authors of the current study hypothesized that CpG methylation of the TbetaRII promoter at the Sp1 binding site -140 mediates this loss of TbetaRII expression in prostate cancer. METHODS: Sixty-seven prostate cancer (PC) samples, 8 benign prostatic hyperplasia (BPH) samples, and 4 prostate cancer cell lines (DUPro, LNCaP, ND-1 and PC-3) were analyzed for 1) TbetaRII mRNA expression by semiquantitative RT-PCR, 2) TbetaRII protein expression by immunohistochemistry, and 3) TGFbetaRII promoter methylation at CpG site -140 by methylation specific PCR and bisulfite DNA sequencing. Prostate cancer cell lines were treated with the demethylating agent 5aza2'deoxycytidine to determine if TbetaRII gene expression could be increased by blocking promoter methylation. RESULTS: mRNA and protein expression of TbetaRII was lower in the PC samples than in the BPH samples. CpG methylation at site -140 was higher in PC than in BPH (P < 0.01). Promoter methylation was inversely correlated with TbetaRII mRNA expression in the PC and BPH samples (P < 0.0001). PC3, ND1, and DUPro TbetaRII mRNA expression increased following treatment of cells with 5-aza-2'-deoxycytidine. CONCLUSION: CpG methylation of the TbetaRII promoter at CPG site -140 leads to functional loss of the TbetaRII gene in prostate cancer. Treatment with 5-aza-2' deoxycytidine can restore gene expression. The current study results report the first association between prostate cancer and loss of the TGF- beta signaling pathway by TbetaRII DNA promoter methylation.  相似文献   

10.
11.
AR signaling is essential for the growth and survival of prostate cancer (PCa), including most of the lethal castration-resistant PCa (CRPC). We previously reported that TGF-β signaling in prostate stroma promotes prostate tumor angiogenesis and growth. By using a PCa/stroma co-culture model, here we show that stromal TGF-β signaling induces comprehensive morphology changes of PCa LNCaP cells. Furthermore, it induces AR activation in LNCaP cells in the absence of significant levels of androgen, as evidenced by induction of several AR target genes including PSA, TMPRSS2, and KLK4. SD-208, a TGF-β receptor 1 specific inhibitor, blocks this TGF-β induced biology. Importantly, stromal TGF-β signaling together with DHT induce robust activation of AR. MDV3100 effectively blocks DHT-induced, but not stromal TGF-β signaling induced AR activation in LNCaP cells, indicating that stromal TGF-β signaling induces both ligand-dependent and ligand-independent AR activation in PCa. TGF-β induces the expression of several growth factors and cytokines in prostate stromal cells, including IL-6, and BMP-6. Interestingly, BMP-6 and IL-6 together induces robust AR activation in these co-cultures, and neutralizing antibodies against BMP-6 and IL-6 attenuate this action. Altogether, our study strongly suggests tumor stromal microenvironment induced AR activation as a direct mechanism of CRPC.  相似文献   

12.
Members of the transforming growth factor-beta (TGF-beta) family regulate a wide range of biological processes including cell proliferation, migration, differentiation, apoptosis, and extracellular matrix deposition. Resistance to TGF-beta-mediated tumour suppressor function in human lung cancer may occur through the loss of type II receptor (TbetaRII) expression. In this study, we investigated the expression pattern of TbetaRII in human lung cancer tissues by RT-PCR and Western blot analyses. We observed downregulation of TbetaRII in 30 out of 46 NSCLC samples (65%) by semiquantitative RT-PCR. Western blot analyses with tumour lysates showed reduced expression of TbetaRII in 77% cases. We also determined the effect of TbetaRII expression in lung adenocarcinoma cell line (VMRC-LCD) that is not responsive to TGF-beta due to lack of TbetaRII expression. Stable expression of TbetaRII in these cells restored TGF-beta-mediated effects including Smad2/3 and Smad4 complex formation, TGF-beta-responsive reporter gene activation, inhibition of cell proliferation and increased apoptosis. Clones expressing TbetaRII showed reduced colony formation in soft-agarose assay and significantly reduced tumorigenicity in athymic nude mice. Therefore, these results suggest that reestablishment of TGF-beta signalling in TbetaRII null cells by stable expression of TbetaRII can reverse malignant behaviour of cells and loss of TbetaRII expression may be involved in lung tumour progression.  相似文献   

13.
PURPOSE: Generation of a reactive stroma environment occurs in many human cancers and is likely to promote tumorigenesis. However, reactive stroma in human prostate cancer has not been defined. We examined stromal cell phenotype and expression of extracellular matrix components in an effort to define the reactive stroma environment and to determine its ontogeny during prostate cancer progression. EXPERIMENTAL DESIGN: Normal prostate, prostatic intraepithelial neoplasia (PIN), and prostate cancer were examined by immunohistochemistry. Tissue samples included radical prostatectomy specimens, frozen biopsy specimens, and a prostate cancer tissue microarray. A human prostate stromal cell line was used to determine whether transforming growth factor beta1 (TGF-beta1) regulates reactive stroma. RESULTS: Compared with normal prostate tissue, reactive stroma in Gleason 3 prostate cancer showed increased vimentin staining and decreased calponin staining (P < 0.001). Double-label immunohistochemistry revealed that reactive stromal cells were vimentin and smooth muscle alpha-actin positive, indicating the myofibroblast phenotype. In addition, reactive stroma cells exhibited elevated collagen I synthesis and expression of tenascin and fibroblast activation protein. Increased vimentin expression and collagen I synthesis were first observed in activated periacinar fibroblasts adjacent to PIN. Similar to previous observations in prostate cancer, TGF-beta1-staining intensity was elevated in PIN. In vitro, TGF-beta1 stimulated human prostatic fibroblasts to switch to the myofibroblast phenotype and to express tenascin. CONCLUSIONS: The stromal microenvironment in human prostate cancer is altered compared with normal stroma and exhibits features of a wound repair stroma. Reactive stroma is composed of myofibroblasts and fibroblasts stimulated to express extracellular matrix components. Reactive stroma appears to be initiated during PIN and evolve with cancer progression to effectively displace the normal fibromuscular stroma. These studies and others suggest that TGF-beta1 is a candidate regulator of reactive stroma during prostate cancer progression.  相似文献   

14.
15.
Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins, and there is evidence that they play a role in tumor cell growth, invasion and metastasis. Matrilysin (MMP-7) is over-expressed in prostate cancer cells and increases prostate cancer cell invasion. Prostate stromal fibroblasts secrete a factor(s), including fibroblast growth factor-1 (FGF-1), which induces promatrilysin expression in the prostate carcinoma cell line LNCaP but not in normal prostate epithelial cells (PrECs). Since FGF-1 is present in the prostate, an altered sensitivity to FGF-1 might explain the up-regulation of matrilysin expression in prostate cancer cells compared to normal prostate epithelium. FGF receptor-1 (FGFR-1) is not normally expressed by normal prostate epithelial cells; however, aberrant expression of this receptor has been reported in prostate cancer cells, including the LNCaP cell line. We hypothesized that aberrant expression of FGFR-1 in PrECs would render them sensitive to induction of promatrilysin expression by recombinant FGF-1. To test this hypothesis, we transiently transfected PrECs with an FGFR-1 expression vector, which resulted in over-expression of FGFR-1 protein in approximately 40% of cells. FGF-1 increased promatrilysin expression in FGFR-1-transfected PrECs 4-fold over mock-transfected cells, and this induction was inhibited by a specific FGFR-1 inhibitor, SU5402, and by co-expression of a dominant negative FGFR-1 protein. Our results demonstrate that aberrant FGFR-1 expression, an epigenetic phenomenon that has been associated with prostate cancer progression, allows induction of promatrilysin expression by FGF-1 in PrECs.  相似文献   

16.
Tumor microenvironment modifications are related to the generation of reactive stroma and to critical events in cancer progression, such as proliferation, migration and apoptosis. In order to clarify these cellular interactions mediated by reactive stroma, we investigated the effects of cell-cell contacts, and the influence of soluble factors and extracellular matrix (ECM) secreted by Benign Prostate Hyperplasia (BPH) reactive stroma over LNCaP prostate tumor cells. Using in vitro functional assays, we demonstrated that ECM strongly stimulated LNCaP cell proliferation and migration, while inhibiting apoptosis, and inducing a deregulated expression pattern of several genes related to prostate cancer (PCa) progression. Conversely, reactive stromal cells per se and their secreted conditioned medium partially modulated these pro-tumorigenic events. These data indicate that secreted ECM in reactive stroma microenvironment contains key molecules that positively modulate important cancer hallmarks.  相似文献   

17.
In prostate cancer, the mechanism by which the stromal cells surrounding the cancer epithelium become reactive and overproduce growth factors is unclear. Furthermore, the precise process of how these stromal cells stimulate the cancer epithelium is not fully understood. We recently found that protease‐activated receptor‐1 (PAR‐1) in these reactive stromal cells is upregulated. To investigate the role of PAR‐1 in the stromal–epithelial interaction, WPMY‐1 stromal myofibroblasts were stimulated with PAR‐1 agonists including thrombin and PAR‐1 activating peptide. We show that WPMY‐1 cells have functional PAR‐1 by signaling through ERK1/2. Conditioned media (CM) from PAR‐1 agonists‐treated WPMY‐1 cells stimulate the epithelial LNCaP cells leading to ERK1/2 activation and cell proliferation. Cytokine array analysis of the CM demonstrates that PAR‐1 induces stromal cells to release numerous cytokines, of which interleukin 6 (IL‐6) is the major factor responsible for mitogenic signaling in LNCaP cells. CM further induces expression of prostate‐specific kallikrein‐related peptidase‐3 (KLK3/PSA) and KLK4 in LNCaP cells via the IL‐6 pathway. Moreover, KLK4 functions as a potent agonist of PAR‐1 by cleaving the receptor at the proper site on cell surface. KLK4 triggers transmembrane signaling and upregulates IL‐6 in WPMY‐1 cells through PAR‐1. Immunohistochemical analysis indicates that PAR‐1 is predominantly expressed in peritumoral stroma while KLK4 is produced exclusively by the epithelial cancer cells. These data provide evidence for a novel double‐paracrine mechanism whereby cancer epithelium produces KLK4 to activate PAR‐1 in the surrounding stroma, which in‐turn releases cytokines (IL‐6) that stimulate cancer cells to proliferate and increase production of KLKs.  相似文献   

18.
19.
20.
The transforming growth factor-beta (TGF-beta) signaling pathway has an important role in regulating normal prostate epithelium, inhibiting proliferation, differentiation, and both androgen deprivation-induced and androgen-independent apoptosis. During prostate cancer formation, most prostate cancer cells become resistant to these homeostatic effects of TGF-beta. Although the loss of expression of either the type I (TbetaRI) or type II (TbetaRII) TGF-beta receptor has been documented in approximately 30% of prostate cancers, most prostate cancers become TGF-beta resistant without mutation or deletion of TbetaRI, TbetaRII, or Smads2, 3, and 4, and thus, the mechanism of resistance remains to be defined. Here, we show that type III TGF-beta receptor (TbetaRIII or betaglycan) expression is decreased or lost in the majority of human prostate cancers as compared with benign prostate tissue at both the mRNA and protein level. Loss of TbetaRIII expression correlates with advancing tumor stage and a higher probability of prostate-specific antigen (PSA) recurrence, suggesting a role in prostate cancer progression. The loss of TbetaRIII expression is mediated by the loss of heterozygosity at the TGFBR3 genomic locus and epigenetic regulation of the TbetaRIII promoter. Functionally, restoring TbetaRIII expression in prostate cancer cells potently decreases cell motility and cell invasion through Matrigel in vitro and prostate tumorigenicity in vivo. Taken together, these studies define the loss of TbetaRIII expression as a common event in human prostate cancer and suggest that this loss is important for prostate cancer progression through effects on cell motility, invasiveness, and tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号