首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously we have shown that G protein-coupled receptor kinase (GRK) 6 plays a major role in the regulation of the human M3 muscarinic acetylcholine receptor (M3 mAChR) in the human neuroblastoma SH-SY5Y. However, 30-fold overexpression of the catalytically inactive, dominant-negative K215RGRK6 produced only a 50% suppression of M3 mAChR phosphorylation and desensitization. Here, we have attempted to determine whether other endogenous kinases play a role in the regulation of M3 mAChR signaling. In contrast to the clear attenuating effect of K215RGRK6 expression on M3 mAChR regulation, dominant-negative forms of GRKs (K220RGRK2, K220RGRK3, K215RGRK5) and casein kinase 1alpha (K46RCK1alpha) were without effect. In addition, inhibition of a variety of second-messenger-regulated kinases and the tyrosine kinase Src also had no effect upon agonist-stimulated M3 mAChR regulation. To investigate further the desensitization process we have followed changes in inositol 1,4,5-trisphosphate in single SHSY5Y cells using the pleckstrin homology domain of PLCdelta1 tagged with green fluorescent protein (eGFP-PHPLCdelta1). Stimulation of cells with approximate EC50 concentrations of agonist before and after a desensitizing period of agonist exposure resulted in a marked attenuation of the latter response. Altered GRK6 activity, through overexpression of wild-type GRK6 or K215RGRK6, enhanced or reduced the degree of M3 mAChR desensitization, respectively. Taken together, our data indicate that M3 mAChR desensitization is mediated by GRK6 in human SH-SY5Y cells, and we show that receptor desensitization of phospholipase C signaling can be monitored in 'real-time' in single, living cells.  相似文献   

2.
Adenosine A(2A)-dopamine D(2) receptor interactions play a very important role in striatal function. A(2A)-D(2) receptor interactions provide an example of the capabilities of information processing by just two different G protein-coupled receptors. Thus, there is evidence for the coexistence of two reciprocal antagonistic interactions between A(2A) and D(2) receptors in the same neurons, the GABAergic enkephalinergic neurons. An antagonistic A(2A)-D(2) intramembrane receptor interaction, which depends on A(2A)-D(2) receptor heteromerization and G(q/11)-PLC signaling, modulates neuronal excitability and neurotransmitter release. On the other hand, an antagonistic A(2A)-D(2) receptor interaction at the adenylyl-cyclase level, which depends on G(s/olf)- and G(i/o)-type V adenylyl-cyclase signaling, modulates protein phosphorylation and gene expression. Finally, under conditions of upregulation of an activator of G protein signaling (AGS3), such as during chronic treatment with addictive drugs, a synergistic A(2A)-D(2) receptor interaction can also be demonstrated. AGS3 facilitates a synergistic interaction between G(s/olf) - and G(i/o)-coupled receptors on the activation of types II/IV adenylyl cyclase, leading to a paradoxical increase in protein phosphorylation and gene expression upon co-activation of A(2A) and D(2) receptors. The analysis of A(2)-D(2) receptor interactions will have implications for the pathophysiology and treatment of basal ganglia disorders and drug addiction.  相似文献   

3.
Cardiovascular regulation is tightly controlled by signaling through G protein-coupled receptors (GPCRs). beta-Adrenergic receptors (ARs) are GPCRs that regulate inotropy and chronotropy in the heart and mediate vasodilation, which critically influences systemic vascular resistance. GPCR kinases (GRKs), including GRK2 (or betaARK1), phosphorylate and desensitize agonist-activated betaARs. Myocardial GRK2 levels are increased in heart failure and data suggest that vascular levels may also be elevated in hypertension. Therefore, we generated transgenic mice with vascular smooth muscle (VSM) targeted overexpression of GRK2, using a portion of the SM22alpha promoter, to determine its impact on vascular betaAR regulation. VSM betaAR signaling, as determined by adenylyl cyclase and mitogen-activated protein (MAP) kinase activation assays, was attenuated when GRK2 was overexpressed 2- to 3-fold. In vivo vasodilation in response to betaAR stimulation using isoproterenol was attenuated and conscious resting mean arterial blood pressure was elevated from 96 +/- 2 mm Hg in nontransgenic littermate control (NLC) mice (n = 9) to 112 +/- 3 mm Hg and 117 +/- 2 mm Hg in two different lines of SM22alpha-GRK2 transgenic mice (n = 7 and n = 5, respectively; p < 0.05). Interestingly, medial VSM thickness was increased 30% from 29.8 +/- 1.6 microm in NLC mice (n = 6) to 39.4 +/- 1.6 microm in SM22alpha-GRK2 mice (n = 7) (p < 0.05) and vascular GRK2 overexpression was sufficient to cause cardiac hypertrophy. These data indicate that we have developed a unique mouse model of hypertension, providing insight into the contribution that vascular betaAR signaling makes toward resting blood pressure and overall cardiovascular regulation. Moreover, they suggest that GRK2 plays an important role in vascular control and may represent a novel therapeutic target for hypertension.  相似文献   

4.
Disruption of histamine H2 receptor and gastrin receptor had different effects growth of gastric mucosa: hypertrophy and atrophy, respectively. To clarify the roles of gastrin and histamine H2 receptors in gastric mucosa, mice deficient in both (double-null mice) were generated and analyzed. Double-null mice exhibited atrophy of gastric mucosae, marked hypergastrinemia and higher gastric pH than gastrin receptor-null mice, which were unresponsive even to carbachol. Comparison of gastric mucosae from 10-week-old wild-type, histamine H2 receptor-null, gastrin receptor-null and double-null mice revealed unique roles of these receptors in gastric mucosal homeostasis. While small parietal cells and increases in the number and mucin contents of mucous neck cells were secondary to impaired acid production, the histamine H2 receptor was responsible for chief cell maturation in terms of pepsinogen expression and type III mucin. In double-null and gastrin receptor-null mice, despite gastric mucosal atrophy, surface mucous cells were significantly increased, in contrast to gastrin-null mice. Thus, it is conceivable that gastrin-gene product(s) other than gastrin-17, in the stimulated state, may exert proliferative actions on surface mucous cells independently of the histamine H2 receptor. These findings provide evidence that different G-protein coupled-receptors affect differentiation into different cell lineages derived from common stem cells in gastric mucosa.  相似文献   

5.
6.
Bucindolol and carvedilol, nonselective beta1- and beta2-adrenergic receptor antagonists, have been widely used in clinical therapeutic trials of congestive heart failure. The aim of the current study was to investigate long-term effects of bucindolol or carvedilol on beta-adrenergic receptor protein and gene expression in cardiac myocytes. Embryonic chick cardiac myocytes were cultured and incubated with bucindolol (1 microM), carvedilol (1 microM), or norepinephrine (1 microM) for 24 h. 125I-iodocyanopindolol binding assays demonstrated that incubation with norepinephrine or bucindolol, but not carvedilol, significantly decreased beta-adrenergic receptor density in crude membranes prepared from the myocytes. Neither bucindolol nor carvedilol significantly stimulated adenylyl cyclase activity in membranes from drug-untreated cells. Unlike by norepinephrine, the receptor density reduction by bucindolol incubation was not accompanied by a change in beta1-adrenergic receptor messenger RNA abundance. A decrease in membrane beta-adrenergic receptor density without a change in cognate messenger RNA abundance was also observed in hamster DDT1 MF2 cell line incubated with bucindolol (1 microM, 24 h). We conclude that incubation with bucindolol, but not carvedilol, results in true reduction of beta-adrenergic receptor density in chick cardiac myocyte membranes by mechanisms that are distinct from those responsible for receptor density reduction by the agonist norepinephrine.  相似文献   

7.
G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process.  相似文献   

8.
目的观察家兔急性缺血再灌注后心肌组织中半胱氨酸蛋白酶-3(caspase-3)表达对心室功能影响。方法家兔30只,分对照组(10只),缺血组(10只),再灌注组(10只)。缺血组套扎左冠状动脉前降支30min,再灌注组套扎30min后再灌注120min,对照组游离左冠状动脉前降支不结扎。超声心动图测量左室收缩功能,采用RT—PCR和免疫组化方法检测caspase-3基因与蛋白表达情况。结果对照组:各项指标基本正常。缺血组与对照组比较:caspase-3蛋白表达明显增高(P〈0.01);caspase-3mRNA表达显著增强;左室应变率明显降低(P〈0.01)。再灌注组与缺血组比较:caspase-3蛋白表达进一步增高(P〈0.01);caspase-3mRNA表达也有所增强;左室应变率有所恢复,但仍明显低于对照组(P〈0.05)。结论缺血再灌注激活capase-3是导致与心室功能的改变的重要原因。  相似文献   

9.
10.
Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.  相似文献   

11.
12.
We investigated the role of group III metabotropic glutamate (mGlu) receptors on glutamate and GABA releases at the periaqueductal grey (PAG) level by using in vivo microdialysis in rats. Intra-PAG perfusion of either L-(+)-2-amino-4-phosphonobutyric acid (L-AP4, 100-300 microM), (RS)-4-phosphonophenylglycine ((RS)-PPG, 100-300 microM) selective agonists of group III mGlu receptors, or (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG, 50-100 microM), a selective agonist of mGlu8 receptor, increased glutamate and decreased GABA extracellular concentrations. (RS)-alpha-methylserine-O-phosphate (MSOP, 0.5 mM), a selective group III receptor antagonist, perfused in combination with (S)-3,4-DCPG, L-AP4 or (RS)-PPG, antagonised the effects induced by these agonists on both extracellular glutamate and GABA values. alpha-Methyl-3-methyl-4-phosphonophenylglycine (UBP1112, 300 microM), a group III mGlu receptor antagonist, perfused in combination with (RS)-PPG or (S)-3,4-DCPG, antagonised the effects induced by these agonists. Intra-PAG perfusion with forskolin (100 microM), an activator of adenylate cyclase, increased dialysate glutamate and GABA levels. Moreover, intra-PAG perfusion with N-[2-(p-bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89) (100 microM), a protein kinase (PKA) inhibitor, abolished the effect of (S)-3,4-DCPG on both glutamate and GABA releases. H-89, per se, did not modify glutamate release but reduced extracellular GABA value at the higher dosage used (200 microM). These data suggest that group III mGlu receptors in the PAG modulate the releases of glutamate and GABA conversely. In particular, both the facilitation of glutamate and the inhibition of GABA releases require the participation of coupling to adenylate cyclase and the subsequent activation of the PKA pathway.  相似文献   

13.

Background and Purpose

Because angiotensin-II-mediated porcine coronary artery (PCA) vasoconstriction is blocked by protein tyrosine kinase (PYK) inhibitors, we hypothesized that proteinase-activated receptors (PARs), known to regulate vascular tension, like angiotensin-II, would also cause PCA contractions via PYK-dependent signalling pathways.

Experimental Approach

Contractions of intact and endothelium-free isolated PCA rings, stimulated by PAR1/PAR2-activating peptides, angiotensin-II, PGF, EGF, PDGF and KCl, were monitored with/without multiple signalling pathway inhibitors, including AG-tyrphostins AG18 (non-specific PYKs), AG1478 (EGF-receptor kinase), AG1296 (PDGF receptor kinase), PP1 (Src kinase), U0126 and PD98059 (MEK/MAPKinase kinase), indomethacin/SC-560/NS-398 (COX-1/2) and L-NAME (NOS).

Key Results

AG18 inhibited the contractions induced by all the agonists except KCl, whereas U0126 attenuated contractions induced by PAR1/PAR2 agonists, EGF and angiotensin-II, but not by PGF, the COX-produced metabolites of arachidonate and KCl. PP1 only affected the responses to PAR1/PAR2-activating peptides and angiotensin-II. The EGF-kinase inhibitor, AG1478, attenuated contractions initiated by the PARs (PAR2 >> PAR1) and EGF itself, but not by angiotensin-II, PGF or KCl. COX-1/2 inhibitors blocked the contractions induced by all the agonists, except KCl and PGF.

Conclusion and Implications

PAR1/2-mediated contractions of the PCA are dependent on Src and MAPKinase and, in part, involve EGF-receptor-kinase transactivation and the generation of a COX-derived contractile agonist. However, the PYK signalling pathways used by PARs are distinct from each other and from those triggered by angiotensin-II and EGF. These signalling pathways may be therapeutic targets for managing coagulation-proteinase-induced coronary vasospasm.  相似文献   

14.
1 The effects of depressed sympathetic function on the inotropic responses of the heart to sympathomimetic amines have been examined in rats immunized against nerve growth factor (NGF) 6 weeks prior to the isolation of cardiac tissues. 2 The activity of tyrosine hydroxylase in cervical sympathetic ganglia and the levels of noradrenaline in ventricular tissue were significantly reduced in NGF-immunized rats. 3 Left atria and papillary muscles from NGF-immunized rats were supersensitive to the β-adrenoceptor agonist isoprenaline when compared with controls. 4 The responses of cardiac tissues to the α-adrenoceptor agonist phenylephrine were unaffected by immunization. 5 These results support the hypothesis that cardiac β- but not α-adrenoceptor sensitivity is regulated by the sympathetic nervous system.  相似文献   

15.
The dopamine D3 receptor agonist PD 128907 decreased body temperature in the rat. The selective dopamine D3 and D4 receptor antagonists, A-437203 and L-745,870, respectively, did not prevent this effect. In contrast, PD 128907-induced hypothermia was antagonized by SCH 23390, a selective D1 receptor antagonist, and by L-741,626, a selective D2 receptor antagonist. Moreover, the selective D2 receptor agonist trihydroxy-N-n-propylnoraporphine (TNPA) elicited a robust hypothermia which was prevented by pretreatment with L-741,626 but not by A-437203. In agreement with previous data obtained in D3 knock-out mice, present results suggest that D2 rather than D3 receptors mediate dopamine receptor agonist-induced hypothermia in rats. In addition, it appears that both D1 and D2 receptors may be involved in a cooperative manner.  相似文献   

16.
The muscle-specific glutathione transferase GSTM2-2 modulates the activity of ryanodine receptor (RyR) calcium release channels: it inhibits the activity of cardiac RyR (RyR2) channels with high affinity and activates skeletal RyR (RyR1) channels with low affinity. The C terminal domain of GSTM2-2 (GSTM2C) alone physically binds to RyR2 and inhibits its activity, but it does not bind to RyR1. We have now used yeast two-hybrid analysis, chemical cross-linking, intrinsic tryptophan fluorescence and Ca(2+) release studies to determine that the binding site for GSTM2C is in divergent region 3 (D3) of RyR2. The D3 region encompasses residues 1855-1890 in RyR2. Specific mutagenesis shows the binding primarily involves electrostatic interactions with residues K1875, K1886, R1887 and K1889, all residues that are present in RyR2, but not in RyR1. The significant sequence differences between the D3 regions of RyR2 and RyR1 explain why GSTM2-2 specifically inhibits RyR2. This specific inhibition of RyR2 could modulate Ca cycling and be useful for the treatment of heart failure. RyR2 inhibition during diastole may improve filling of the SR with Ca(2+) and improve contractility.  相似文献   

17.
Preclinical studies support an important role of dopamine D3 receptors (DRD3s) in alcohol use disorder (AUD). In animals, voluntary alcohol consumption increases DRD3 expression, and pharmacological blockade of DRD3s attenuates alcohol self-administration and reinstatement of alcohol seeking. However, these findings have yet to be translated in humans. This study used positron emission tomography (PET) and [11C]-(+)-PHNO to compare receptor levels in several dopamine D2 receptor (DRD2) and DRD3 regions of interest between AUD subjects in early abstinence (n = 17; 6.59 ± 4.14 days of abstinence) and healthy controls (n = 18). We recruited non-treatment seeking subjects meeting DSM-5 criteria for AUD. We examined the relationship between DRD2/3 levels and both alcohol craving and alcohol motivation/wanting, using a cue reactivity procedure and an intravenous alcohol self-administration (IVASA) paradigm, respectively. [11C]-(+)-PHNO binding levels in AUD subjects were significantly lower than binding in HCs when looking at all DRD2/3 ROIs jointly (Wilk’s Λ = .58, F(6,28) =3.33, p = 0.013, η2p = 0.42), however there were no region-specific differences. Binding values demonstrate −12.3% and −16.1% lower [11C]-(+)-PHNO binding in the SMST and SN respectively, though these differences did not withstand Bonferroni corrections. There was a positive association between [11C]-(+)-PHNO binding in the SN (almost exclusively reflective of DRD3) and alpha (lower values reflect higher alcohol demand) in the APT after Bonferroni corrections (r = 0.66, p = 0.0080). This demonstrates that AUD subjects with lower DRD3 levels in the SN exhibit increased demand for alcohol. These results replicate previous findings demonstrating reduced DRD2/3 levels while also supporting a lack of DRD3 upregulation and potential downregulation in early abstinent AUD. Furthermore, the finding that binding in the SN is associated with alcohol demand warrants further examination.Subject terms: Neurotransmitters, Addiction, Translational research  相似文献   

18.
The agonist-induced reduction of beta-adrenergic receptor (beta AR) cell surface density is a well documented phenomenon. The mechanisms responsible for this regulation have been well characterized for the beta 2AR. They include a rapid sequestration of the receptor away from the cell surface in a vesicular compartment and a longer term down-regulation of the total beta 2AR number. In contrast, very little is known about the cell surface regulation of the beta 1AR. In the present study, we have compared the agonist-mediated regulation of beta 1- and beta 2AR in Chinese hamster fibroblasts transfected with the cDNA encoding either beta AR subtype. Cells expressing similar numbers of the two beta AR subtypes were selected for the study. The expressed receptors exhibit typical beta 1- and beta 2AR selectivity for agonists and antagonists, as assessed by radioligand binding. Both receptors were found to be positively coupled to the adenylyl cyclase stimulatory pathway, but marked differences in the receptor regulation profiles were observed. Treatment of the cells expressing the beta 2AR with the agonist isoproterenol leads to a rapid sequestration of greater than 30% of the receptors away from the cell surface into a light vesicular fraction, where they are inaccessible to the hydrophilic ligand CGP-12177. In contrast, virtually no agonist-induced sequestration is observed in the cells expressing the beta 1AR. Longer exposure of the cells to isoproterenol leads to a time-dependent reduction in the total number of beta ARs in both beta 1- and beta 2AR-expressing cell lines. However, this down-regulation is significantly slower in the cells expressing the beta 1AR. In fact, no appreciable down-regulation of the beta 1ARs is detected in the first 4 hr of agonist treatment, compared with a down-regulation of greater than 50% of the beta 2ARs for the same period. After a 24-hr treatment with isoproterenol, less than 20% of the original number of beta 2ARs remain, whereas 60% of the beta 1ARs are still present after the same treatment. These results, therefore, suggest that, when expressed in an identical cell line, beta 1AR and beta 2AR follow distinct patterns of regulation. In fact, both agonist-induced sequestration and down-regulation are considerably blunted for the beta 1AR, compared with the beta 2AR.  相似文献   

19.
Activation of the beta adrenergic receptor (betaAR) induces a tightly controlled cAMP/protein kinase A (PKA) activity to ensure an agonist dose-dependent and saturable contraction response in animal heart. We have found that stimulation of beta(1)AR by isoproterenol induces maximal contraction responses at the dose of 1 microM in cardiac myocytes; however, cAMP accumulation continues to increase with higher agonist concentrations. Dose-dependent cAMP accumulation is tightly controlled by negative regulator phosphodiesterase 4 (PDE4) that hydrolyzes cAMP. At 1 nM isoproterenol, cAMP accumulation is minimal because of the hydrolysis of cAMP by PDE4, which leads to a small increase in PKA phosphorylation of phospholamban and troponin I (TnI), and contraction responses. Inhibition of PDE4 activity with rolipram enhances cAMP accumulation, yields maximal PKA phosphorylation of phospholamban and TnI, and myocyte contraction responses. In contrast, at 10 microM isoproterenol, despite the negative effect of PDE4, cAMP accumulation is sufficient for maximal PKA phosphorylation of phospholamban and TnI. Inhibition of PDE4 with rolipram enhances cAMP accumulation, but not PKA phosphorylation and contraction responses. It is interesting that activities of both PKA and protein phosphatase 2A (PP2A) are enhanced under beta(1)AR activation with 10 microM isoproterenol, and PP2A is recruited to PKA/A kinase-anchoring protein complex. Inhibition of PP2A with okadaic acid further enhances the phosphorylation of phospholamban and TnI as well as contraction responses induced by 10 microM isoproterenol. Therefore, PP2A plays a key role in limiting PKA phosphorylation of phospholamban and TnI for myocyte contraction responses under beta(1)AR stimulation.  相似文献   

20.
The molecular mechanism underlying the export from the endoplasmic reticulum (ER) to the cell surface and its role in the regulation of signaling of adrenergic receptors (ARs) remain largely unknown. In this report, we determined the role of Rab1, a Ras-like GTPase that coordinates protein transport specifically from the ER to the Golgi, in the cell surface targeting and function of endogenous beta- and alpha1-ARs in neonatal rat ventricular myocytes. Adenovirus-driven expression of Rab1 into myocytes selectively increased the cell-surface number of alpha1-AR, but not beta-AR, whereas the dominant-negative mutant Rab1N124I significantly reduced the cell-surface expression of beta-AR and alpha1-AR. Brefeldin A inhibited beta-AR and alpha1-AR export and antagonized the Rab1 effect on alpha1-AR expression. Manipulation of Rab1 function similarly influenced the transport of alpha1A- and alpha1B-ARs as well as beta1- and beta2-ARs. Fluorescent microscopy analysis demonstrated that expression of Rab1N124I and Rab1 small interfering RNA induced a marked accumulation of GFP-tagged beta2-AR and alpha1B-AR in the ER. Consistent with the effects on receptor cell-surface targeting, Rab1 selectively enhanced ERK1/2 activation and hypertrophic growth in response to the alpha1-AR agonist phenylephrine but not to the beta-AR agonist isoproterenol. Rab1N124I inhibited both agonist-mediated ERK1/2 activation and hypertrophic growth in neonatal myocytes. These results demonstrate that the cell-surface targeting and signaling of beta- and alpha1-ARs require Rab1 and are differentially modulated by augmentation of Rab1 function. Our data provide strong evidence implicating the ER-to-Golgi traffic as a site for selective manipulation of distinct AR function in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号