首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the glucokinase (GK) gene cause defects in blood glucose homeostasis. In some cases (V62M and G72R), the phenotype cannot be explained by altered enzyme kinetics or protein instability. We used transient and stable expression of green fluorescent protein (GFP) GK chimaeras in MIN6 beta-cells to study the phenotype defect of V62M and G72R. GK activity in lysates of MIN6 cell lines stably expressing wild-type or mutant GFP GK showed the expected affinity for glucose and response to pharmacological activators, indicating the expression of catalytically active enzymes. MIN6 cells stably expressing GFP V62M or GFP G72R had a lower GK activity-to-GK immunoreactivity ratio and GK activity-to-GK mRNA ratio but not GK immunoreactivity-to-GK mRNA ratio than wild-type GFP GK. Heterologous expression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FDP2) in cell lines increased GK activity for wild-type GK and V62M but not for G72R, whereas expression of liver GK regulatory protein (GKRP) increased GK activity for wild type but not V62M or G72R. Lack of interaction of these mutants with GKRP was also evident in hepatocyte transfections from the lack of nuclear accumulation. These results suggest that cellular loss of GK catalytic activity rather than impaired translation or enhanced protein degradation may account for the hyperglycemia in subjects with V62M and G72R mutations.  相似文献   

2.
Johnson D  Shepherd RM  Gill D  Gorman T  Smith DM  Dunne MJ 《Diabetes》2007,56(6):1694-1702
Because glucokinase is a metabolic sensor involved in the regulated release of insulin, we have investigated the acute actions of novel glucokinase activator compound 50 (GKA50) on islet function. Insulin secretion was determined by enzyme-linked immunosorbent assay, and microfluorimetry with fura-2 was used to examine intracellular Ca(2+) homeostasis ([Ca(2+)](i)) in isolated mouse, rat, and human islets of Langerhans and in the MIN6 insulin-secreting mouse cell line. In rodent islets and MIN6 cells, 1 micromol/l GKA50 was found to stimulate insulin secretion and raise [Ca(2+)](i) in the presence of glucose (2-10 mmol/l). Similar effects on insulin release were also seen in isolated human islets. GKA50 (1 micromol/l) caused a leftward shift in the glucose-concentration response profiles, and the half-maximal effective concentration (EC(50)) values for glucose were shifted by 3 mmol/l in rat islets and approximately 10 mmol/l in MIN6 cells. There was no significant effect of GKA50 on the maximal rates of glucose-stimulated insulin secretion. In the absence of glucose, GKA50 failed to elevate [Ca(2+)](i) (1 micromol/l GKA50) or to stimulate insulin release (30 nmol/l-10 micromol/l GKA50). At 5 mmol/l glucose, the EC(50) for GKA50 in MIN6 cells was approximately 0.3 micromol/l. Inhibition of glucokinase with mannoheptulose or 5-thioglucose selectively inhibited the action of GKA50 on insulin release but not the effects of tolbutamide. Similarly, 3-methoxyglucose prevented GKA50-induced rises in [Ca(2+)](i) but not the actions of tolbutamide. Finally, the ATP-sensitive K(+) channel agonist diazoxide (200 micromol/l) inhibited GKA50-induced insulin release and its elevation of [Ca(2+)](i.) We show that GKA50 is a glucose-like activator of beta-cell metabolism in rodent and human islets and a Ca(2+)-dependent modulator of insulin secretion.  相似文献   

3.
Glucokinase (GK) has a major role in the control of blood glucose homeostasis and is a strong potential target for the pharmacological treatment of type 2 diabetes. We report here the mechanism of action of two novel and potent direct activators of GK: 6-[(3-isobutoxy-5-isopropoxybenzoyl)amino]nicotinic acid(GKA1) and 5-([3-isopropoxy-5-[2-(3-thienyl)ethoxy]benzoyl]amino)-1,3,4-thiadiazole-2-carboxylic acid(GKA2), which increase the affinity of GK for glucose by 4- and 11-fold, respectively. GKA1 increased the affinity of GK for the competitive inhibitor mannoheptulose but did not affect the affinity for the inhibitors palmitoyl-CoA and the endogenous 68-kDa regulator (GK regulatory protein [GKRP]), which bind to allosteric sites or to N-acetylglucosamine, which binds to the catalytic site. In hepatocytes, GKA1 and GKA2 stimulated glucose phosphorylation, glycolysis, and glycogen synthesis to a similar extent as sorbitol, a precursor of fructose 1-phosphate, which indirectly activates GK through promoting its dissociation from GKRP. Consistent with their effects on isolated GK, these compounds also increased the affinity of hepatocyte metabolism for glucose. GKA1 and GKA2 caused translocation of GK from the nucleus to the cytoplasm. This effect was additive with the effect of sorbitol and is best explained by a "glucose-like" effect of the GK activators in translocating GK to the cytoplasm. In conclusion, GK activators are potential antihyperglycemic agents for the treatment of type 2 diabetes through the stimulation of hepatic glucose metabolism by a mechanism independent of GKRP.  相似文献   

4.
Neonatal diabetes can be either permanent or transient. We have recently shown that permanent neonatal diabetes can result from complete deficiency of glucokinase activity. Here we report three new cases of glucokinase-related permanent neonatal diabetes. The probands had intrauterine growth retardation (birth weight <1,900 g) and insulin-treated diabetes from birth (diagnosis within the first week of life). One of the subjects was homozygous for the missense mutation Ala378Val (A378V), which is an inactivating mutation with an activity index of only 0.2% of wild-type glucokinase activity. The second subject was homozygous for a mutation in the splice donor site of exon 8 (intervening sequence 8 [IVS8] + 2T-->G), which is predicted to lead to the synthesis of an inactive protein. The third subject (second cousin of subject 2) was a compound heterozygote with one allele having the splice-site mutation IVS8 + 2T-->G and the other the missense mutation Gly264Ser (G264S), a mutation with an activity index of 86% of normal activity. The five subjects with permanent neonatal diabetes due to glucokinase deficiency identified to date are characterized by intrauterine growth retardation, permanent insulin-requiring diabetes from the first day of life, and hyperglycemia in both parents. Autosomal recessive inheritance and enzyme deficiency are features typical for an inborn error of metabolism, which occurred in the glucose-insulin signaling pathway in these subjects.  相似文献   

5.
To identify the amino acids involved in the specific regulatory properties of glucokinase, and particularly its low affinity for glucose, mutants of the human islet enzyme have been prepared, in which glucokinase-specific residues have been replaced. Two mutations increased the affinity for glucose by twofold (K296M) and sixfold (Y214A), the latter also decreasing the Hill coefficient from 1.75 to 1.2 with minimal change in the affinity for ATP. Combining these two mutations with N166R resulted in a 50-fold decrease in the half-saturating substrate concentration (S0.5) value, which became then comparable to the Km of hexokinase II. The location of N166, Y214, and K296 in the three-dimensional structure of glucokinase suggests that these mutations act by favoring closure of the catalytic cleft. As a rule, mutations changed the affinity for glucose and for the competitive inhibitor mannoheptulose (MH) in parallel, whereas they barely affected the affinity for N-acetylglucosamine (NAG). These and other results suggest that NAG and MH bind to the same site but to different conformations of glucokinase. A small reduction in the affinity for the regulatory protein was observed with mutations of residues on the smaller domain and in the hinge region, confirming the bipartite nature of the binding site for the regulatory protein. The K296M mutant was found to have a threefold decreased affinity for palmitoyl CoA; this effect was additive to that previously observed for the E279Q mutant, indicating that the binding site for long-chain acyl CoAs is located on the upper face of the larger domain.  相似文献   

6.
7.
The enzyme glucokinase (GK) plays a central role in glucose homeostasis. Hepatic GK activity is acutely controlled by the action of the GK regulatory protein (GKRP). In vitro evidence suggests that GKRP reversibly binds to GK and inhibits its activity; however, less is known about the in vivo function of GKRP. To further explore the physiological role of GKRP in vivo, we used an E1/E2a/E3-deficient adenoviral vector containing the cDNA encoding human GKRP (Av3hGKRP). High fat diet-induced diabetic mice were administered Av3hGKRP or a control vector lacking a transgene (Av3Null). Surprisingly, the Av3hGKRP-treated mice showed a significant improvement in glucose tolerance and had lower fasting blood glucose levels than Av3Null-treated mice. A coincident decrease in insulin levels indicated that the Av3hGKRP-treated mice had sharply improved insulin sensitivity. These mice also exhibited lower leptin levels, reduced body weight, and decreased liver GK activity. In vitro experiments indicated that GKRP was able to increase both GK protein and enzymatic activity levels, suggesting that another role for GKRP is to stabilize and/or protect GK. These data are the first to indicate the ability of GKRP to treat type 2 diabetes and therefore have significant implications for future therapies of this disease.  相似文献   

8.
Osteopetrosis is a heritable bone disorder resulting from a deficiency of or a functional defect in osteoclasts. We aimed to characterize the molecular defects and clinical manifestations in Chinese patients with osteopetrosis by studying 12 unrelated osteopetrosis families. The entire coding region and adjacent splice sites of the CLCN7, TCIRG1, LRP5 and SOST genes were amplified and directly sequenced. X-rays of hip and lumbar spine, bone mineral density and bone turnover markers were examined simultaneously. Family history and fracture history were collected using a questionnaire. Among 12 unrelated families, 10 families were diagnosed with autosomal dominant osteopetrosis type II (ADOII) with 10 probands and 3 affected subjects. Two individuals in the other two families were diagnosed with uncategorized osteopetrosis because no mutations were detected in any of the four studied genes. Eight mutations, including two reported mutations (R767W and E798FS) and six novel mutations (E313K, A316G, R743W, G741R, W127G and S290F), were detected in the CLCN7 gene from 12 living ADOII patients. Among them, R767W and R743W mutations were two common mutations that were each found in 20% of 10 ADOII probands. In CLCN7-related ADOII patients, long bone fractures and elevated serum CK level were two major clinical phenotypes, especially in patients younger than 18 years. Further functional studies of the above eight mutations in the CLCN7 gene are needed in the future.  相似文献   

9.
10.
Aiston S  Andersen B  Agius L 《Diabetes》2003,52(6):1333-1339
High glucose concentration suppresses hepatic glycogenolysis by allosteric inhibition and dephosphorylation (inactivation) of phosphorylase-a. The latter effect is attributed to a direct effect of glucose on the conformation of phosphorylase-a. Although glucose-6-phosphate (G6P), like glucose, stimulates dephosphorylation of phosphorylase-a by phosphorylase phosphatase, its physiological role in regulating glycogenolysis in intact hepatocytes has not been tested. We show in this study that metabolic conditions associated with an increase in G6P, including glucokinase overexpression and incubation with octanoate or dihydroxyacetone, cause inactivation of phosphorylase. The latter conditions also inhibit glycogenolysis. The activity of phosphorylase-a correlated inversely with the G6P concentration within the physiological range. The inhibition of glycogenolysis and inactivation of phosphorylase-a caused by 10 mmol/l glucose can be at least in part counteracted by inhibition of glucokinase with 5-thioglucose, which lowers G6P. In conclusion, metabolic conditions that alter the hepatic G6P content affect glycogen metabolism not only through regulation of glycogen synthase but also through regulation of the activation state of phosphorylase. Dysregulation of G6P in diabetes by changes in activity of glucokinase or glucose 6-phosphatase may be a contributing factor to impaired suppression of glycogenolysis by hyperglycemia.  相似文献   

11.
Book reviews     
《Anaesthesia》1984,39(6):616-619
Book Reviews in this article.
Inhalation Anaestbesiology Edited by R.I. M azze
Anaesthesia and Sedation in Dentistry by M.P. C oplans and R.A. G reen
Persistent Pain. Modern Methods of Treatment, Vol. 4 Edited by S. L ipton and J. M iles
Postanestbetic Recovery By R. E ltringham , M. D urkin and S. A ndrewes
1983 Year Book of Anaesthesia Edited by R.D. M iller , R.R. K irby , G.W. O stheimer , L.J. S aidman and R.K. S toelting .
Anaesthesia in Midwifery By R uth B evis .
Brief reviews of book received by tbe Editor Developmental Wumacology. progress in Clinical and Biological Research, Vol. 135 Edited by S.M. M ac L eod , A.B. O key , S.P. S pielberg and M. S pino .  相似文献   

12.
Glucokinase (GCK) is a key regulatory enzyme in the pancreatic beta-cell and catalyzes the rate-limiting step for beta-cell glucose metabolism. We report two novel GCK mutations (T65I and W99R) that have arisen de novo in two families with familial hypoglycemia. Insulin levels, although inappropriately high for the degree of hypoglycemia, remain regulated by fluctuations in glycemia, and pancreatic histology was normal. These mutations are within the recently identified heterotropic allosteric activator site in the theoretical model of human beta-cell glucokinase. Functional analysis of the purified recombinant glutathionyl S-transferase fusion proteins of T65I and W99R GCK revealed that the kinetic changes result in a relative increased activity index (a measure of the enzyme's phosphorylating potential) of 9.81 and 6.36, respectively, compared with wild-type. The predicted thresholds for glucose-stimulated insulin release using mathematical modeling were 3.1 (T65I) and 2.8 (W99R) mmol/l, which were in line with the patients' fasting glucose. In conclusion, we have identified two novel spontaneous GCK-activating mutations whose clinical phenotype clearly differs from mutations in ATP-sensitive K(+) channel genes. In vitro studies confirm the validity of structural and functional models of GCK and the putative allosteric activator site, which is a potential drug target for the treatment of type 2 diabetes.  相似文献   

13.
We have studied the effects of various PDB-causing mutations of SQSTM1 on the in vitro ubiquitin-binding properties of the p62 protein. All mutations caused loss of monoubiquitin-binding and impaired K48-linked polyubiquitin-binding, which was only evident at physiological temperature. This suggests that SQSTM1 mutations predispose to PDB through a common mechanism that depends on loss of ubiquitin-binding by p62. INTRODUCTION: Mutations in the SQSTM1 gene, which affect the ubiquitin-associated (UBA) domain of the p62 protein, are a common cause of Paget's disease of bone (PDB). We previously showed that the isolated UBA domain of p62 binds K48-linked polyubiquitin chains in vitro and that PDB-causing mutations in the UBA domain can be resolved in to those which retain (P392L and G411S) or lose (M404V and G425R) the ability to bind K48-linked polyubiquitin. To further clarify the mechanisms by which these mutations predispose to PDB, we have extended these analyses to study the ubiquitin-binding properties of the PDB-causing mutations in the context of the full-length p62 protein. MATERIALS AND METHODS: We studied the effects of various PDB-causing mutations on the interaction between glutathione S-transferase (GST)-tagged p62 proteins and monoubiquitin, as well as K48-linked polyubiquitin chains, using in vitro ubiquitin-binding assays. RESULTS: All of the PDB-causing mutations assessed (P392L, E396X, M404V, G411S, and G425R) caused loss of monoubiquitin binding and impaired K48-linked polyubiquitin-binding when introduced into the full-length p62 protein. However, these effects were only observed when the binding experiments were conducted at physiological temperature (37 degrees C); they were not seen at room temperature or at 4 degrees C. CONCLUSIONS: Our in vitro findings suggest that PDB-causing mutations of SQSTM1 could predispose to disease through a common mechanism that is dependent on impaired binding of p62 to a ubiquitylated target and show that 5q35-linked PDB is the first example of a human disorder caused by loss of function mutations in a UBA domain.  相似文献   

14.
Book reviews     
《Anaesthesia》1987,42(10):1130-1135
Book review in this Article
Current European Anaesthesiology Edited by R.M. J ones , H. B ergmann , J. L assner , J.C. O tteni and D. T homson
Physics for the Anaesthetist, 4th edn W.M. M ushin and P.L. J ones .
Diagnostic Methods in Critical Care. Automated Data Collection and Interpretation Edited by W.C. S hoemaker and E. A braham
Practical Management of Pain Edited by P. P rithvi R aj .
Anaesthesia Review 4 Edited by L. K aufman .
Intensive Care. A Concise Textbook By C.J. H inds .
Neurosurgical Anaesthesia and Intensive Care, 2nd edn By T.V. C ampkin and J.M. T urner .
1986 Yearbook of Anesthesia Edited by R.D. M iller , R.R. K irby , G.W. O stheimer , L.J. S aidman and R.K. S toelting .
Advances in Anesthesia, Vol. 4 Edited by R.K. S toelting , P.G. B arash and TJ. G allagher .
Companion to the FFARCS Part III By C. F. C orke and I.J.B. J ackson .  相似文献   

15.
11个Fabry病家系的α-半乳糖苷酶A活性及GLA基因检测   总被引:5,自引:1,他引:4  
目的 建立Fabry病α-半乳糖苷酶A(α-gal A)酶活性及基因检测体系,并对基因型临床表型进行分析。方法 检测11个Fabry病家系先证者及家系成员外周血粒细胞α-gal A活性及GLA基因。酶活性检测采用底物荧光法,基因检测采用PCR直接测序法,并进行临床评估。结果 在11个Fabry病家系中检出9种GAL基因突变,包括5个错义突变(R301Q、I91T、G132R、F273L、D165Y),2个无义突变(W236X、R342X),1个单碱基缺失(1082delG)和1个大片段缺失(44 bp nt.1077),其中4种为新突变(D165Y、F273L、1082delG、44 bp nt.1077)。11个家系中通过基因及酶活性检测,确诊男性半合子13例,女性杂合子12例。男性半合子α-gal A酶活性显著下降,女性杂合子α-gal A酶活性部分下降,1/4女性杂合子的α-gal A酶活性处于正常范围内。结论 确诊了11个Fabry病家系的GLA基因突变类型,并筛出所有家系中先证者以外的患者14例。外周血粒细胞α-gal A酶活性和GAL基因检测是筛查和诊断Fabry病的有效手段。  相似文献   

16.
Ubiquitin-associated (UBA) domain mutations of SQSTM1 are an important cause of Paget’s disease of bone (PDB), which is a human skeletal disorder characterized by abnormal bone turnover. We previously showed that, when introduced into the full-length SQSTM1 protein, the disease-causing P392L, M404V, G411S, and G425R missense mutations and the E396X truncating mutation (representative of all of the SQSTM1 truncating mutations) cause a generalized loss of monoubiquitin binding and impaired K48-linked polyubiquitin binding at physiological temperature. Here, we show that the remaining three known PDB missense mutations, P387L, S399P, and M404T, have similar deleterious effects on monoubiquitin binding and K48-linked polyubiquitin binding by SQSTM1. The P387L mutation affects an apparently unstructured region at the N terminus of the UBA domain, some five residues from the start of the first helix, which is dispensable for polyubiquitin binding by the isolated UBA domain. Our findings support the proposal that the disease mechanism in PDB with SQSTM1 mutations involves a common loss of ubiquitin binding function of SQSTM1 and implicate a sequence extrinsic to the compact globular region of the UBA domain as a critical determinant of ubiquitin recognition by the full-length SQSTM1 protein.  相似文献   

17.
Book reviews     
《Anaesthesia》1983,38(7):705-709
Books review in this article:
Care of the Critically III Patient Edited by J ack T inker and M aurice R apin
Clinical Anesthesia Procedures of the Massachusetts General Hospital Edited by P.W. L ebowttz , L.A. N ewberg and M.T. G illette
Mannal of Anaesthesia (2nd edition) Edited by J ohn C. S now
Handbook of Intensive Care Edited by W.H. B ain and K.M. T aylor
Anaesthesia and Co-existing Disease Edited by R obert K. S toelting and S tephen F. D ierdorf
Applied Psysiology in Clinical Respiratory Care Edited by O mar P rakash
ABC of Brain Stem Death By C hristopher P allis
Management of Epidaral Analgesia in Childbirth (2nd Edition) By B.A. Waldron
Narcotic Analgesics in Anesthesiology Edited by L uke M. K itahata and J.G. C ollins  相似文献   

18.
Hampson LJ  Agius L 《Diabetes》2005,54(3):617-623
Glucokinase and phosphorylase both have a high control strength over hepatocyte glycogen metabolism and are potential therapeutic targets for type 2 diabetes. We tested whether combined phosphorylase inactivation and glucokinase activation is a more effective strategy for controlling hepatic glycogen metabolism than single-site targeting. Activation of glucokinase by enzyme overexpression combined with selective dephosphorylation of phosphorylase-a by an indole carboxamide that favors the T conformation of phosphorylase caused a greater stimulation of glycogen synthesis than the sum of either treatment alone. This result is explained by the complementary roles of elevated glucose-6-phosphate (G6P; a positive modulator) and depleted phosphorylase-a (a negative modulator) in activating glycogen synthase and also by synergistic inactivation of phosphorylase-a by glucokinase activation and the indole carboxamide. Inactivation of phosphorylase-a by the indole carboxamide was counteracted by 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside, which is metabolized to an AMP analog; this effect was reversed by G6P. Our findings provide further evidence for the inverse roles of G6P and AMP in regulating the activation state of hepatic phosphorylase. It is proposed that dual targeting of glucokinase and phosphorylase-a enables improved potency and efficacy in controlling hepatic glucose metabolism.  相似文献   

19.
Fujimoto Y  Torres TP  Donahue EP  Shiota M 《Diabetes》2006,55(9):2479-2490
The effect of restoration of normoglycemia by a novel sodium-dependent glucose transporter inhibitor (T-1095) on impaired hepatic glucose uptake was examined in 14-week-old Zucker diabetic fatty (ZDF) rats. The nontreated group exhibited persistent endogenous glucose production (EGP) despite marked hyperglycemia. Gluconeogenesis and glucose cycling (GC) were responsible for 46 and 51% of glucose-6-phosphatase (G6Pase) flux, respectively. Net incorporation of plasma glucose into hepatic glycogen was negligible. Glucokinase (GK) and its inhibitory protein, GK regulatory protein (GKRP), were colocalized in the cytoplasm of hepatocytes. At day 7 of drug administration, EGP was slightly reduced, but G6Pase flux and GC were markedly lower compared with the nontreated group. In this case, GK and GKRP were colocalized in the nuclei of hepatocytes. When plasma glucose and insulin levels were raised during a clamp, EGP was completely suppressed and GC, glycogen synthesis from plasma glucose, and the fractional contribution of plasma glucose to uridine diphosphoglucose flux were markedly increased. GK, but not GKRP, was translocated from the nucleus to the cytoplasm. Glucotoxicity may result in the blunted response of hepatic glucose flux to elevated plasma glucose and/or insulin associated with impaired regulation of GK by GKRP in ZDF rats.  相似文献   

20.
BOOK REVIEWS     
《ANZ journal of surgery》1980,50(5):557-560
Book reviewed in this article: THE CANCER REFERENCE BOOK: DIRECT AND CLEAR ANSWERS TO EVERYONE'S QUESTIONS By PAUL M. LEVITT and ALISA S. GURALNICK, with Dr A. ROBERT KAGAN and Dr HARVEY GILBERT. REVIEW OF MEDICAL PHYSIOLOGY By WILLIAM F. GANONG M.D. TECHNIQUES OF VAGOTOMY By Alan G. Johnson, M.Chir., F.R.C.S. and Keith W. Reynolds, M.S., F.R.C.S. APLASTIC ANAEMIA by C. G. GEARY, F.R.C.P. A TEXTBOOK OF SURGICAL PATHOLOGY By Sir CHARLES ILLINGWORTH, C.B.E., M.D., Ch.M., Hon. LL.D. (Glas., Leeds), Hon. D.Sc. (Sheffield, Belfast), F.R.C.S., Hon. F.R.C.S., Hon. F.A.C.S., Hon. F.R.C.P.S., Hon. F.C.S.G., and the late BRUCE M. DICK M.B., F.R.C.S. GASTROINTESTINAL SURGERY by JOHN S. NAJARIAN, M.D. and JOHN P. DELANEY, M.D. RECENT RESULTS IN CANCER RESEARCH ADJUVANT THERAPIES AND) MARKERS OF POST-SURGICAL MINIMAL RESIDUAL DISEASE: Markers and General Problems of Cancer Adjuvant Theraples G. BONNADONNA, G. MATTAY and S. E. SALMON. OPERATIVE SURGERY: FUNDAMENTAL INTERNATIONAL TECHNIQUES. ABDOMEN by HUGH DUDLEY, Ch.M, F.R.C.S, F.R.C.S. (Ed), F.R.A.C.S., CHARLES ROB, M.C., M.D, M.Chir, F.R.C.S, and RODNEY SMITH, K.B.E, MS, F.R.C.S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号