首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A question remaining to be answered about RecA protein function concerns the role of ATP hydrolysis during the DNA-strand-exchange reaction. In this paper we describe the formation of joint molecules in the absence of ATP hydrolysis, using adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]) as nucleotide cofactor. Upon the addition of double-stranded DNA, the ATP[gamma S]-RecA protein-single-stranded DNA presynaptic complexes can form homologously paired molecules that are stable after deproteinization. Formation of these joint molecules requires both homology and a free homologous end, suggesting that they are plectonemic in nature. This reaction is very sensitive to magnesium ion concentration, with a maximum rate and extent observed at 4-5 mM magnesium acetate. Under these conditions, the average length of heteroduplex DNA within the joint molecules is 2.4-3.4 kilobase pairs. Thus, RecA protein can form extensive regions of heteroduplex DNA in the presence of ATP[gamma S], suggesting that homologous pairing and the exchange of the DNA molecules can occur without ATP hydrolysis. A model for the RecA protein-catalyzed DNA-strand-exchange reaction that incorporates these results and its relevance to the mechanisms of eukaryotic recombinases are presented.  相似文献   

2.
Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.  相似文献   

3.
Ethidium bromide, acridine orange, 4'-(9-acridinylamino)methanesulfon-o-anisidide (o-AMSA), and m-AMSA induce the rapid binding of RecA protein to double-stranded (ds) DNA. The filaments formed appear to retain the drug and are 12.8 nm in diameter with an 8.0-nm pitch. Two classes of drugs have been distinguished: (i) those that bind to RecA protein and induce assembly at low relative concentrations (e.g., ethidium bromide) and (ii) those that do not appear to interact directly with RecA protein and must be present at relatively high drug concentrations to stimulate assembly (e.g., m-AMSA). Ethidium bromide, acridine orange, and quinacrine inhibit RecA protein binding to single-stranded DNA. Addition of ATP to the drug-induced filaments causes the protein to rapidly dissociate from dsDNA, and protein binding to dsDNA diminishes upon extended exposure to room light. We suggest that the structure of the drug-induced filaments may be more typical of the complex that initiates RecA protein assembly along DNA rather than the product of extensive polymerization as induced by adenosine 5'-[gamma-thio]triphosphate.  相似文献   

4.
A model for actin polymerization is proposed in which the rate of elongation of actin filaments depends on whether adenosine 5'-triphosphate or adenosine 5'-diphosphate is bound to the two terminal subunits of the filament. This model accounts quantitatively for the experimental data on the kinetics of filament elongation and explains the effect of ATP hydrolysis on actin polymerization.  相似文献   

5.
In many eubacteria, coexpression of recX with recA is essential for attenuation of the deleterious effects of recA overexpression; however, the molecular mechanism has remained enigmatic. Here, we show that Mycobacterium tuberculosis RecX binds directly to M. tuberculosis RecA as well as M. smegmatis and E. coli RecA proteins in vivo and in vitro, but not single-stranded DNA binding protein. The direct association of RecX with RecA failed to regulate the specificity or extent of binding of RecA either to DNA or ATP, ligands that are central to activation of its functions. Significantly, RecX severely impeded ATP hydrolysis and the generation of heteroduplex DNA promoted by homologous, as well as heterologous, RecA proteins. These findings reveal a mode of negative regulation of RecA, and imply that RecX might act as an anti-recombinase to quell inappropriate recombinational repair during normal DNA metabolism.  相似文献   

6.
Sequence-specific ligation of DNA using RecA protein   总被引:1,自引:0,他引:1       下载免费PDF全文
A method is described that allows the sequence-specific ligation of DNA. The method is based on the ability of RecA protein from Escherichia coli to selectively pair oligonucleotides to their homologous sequences at the ends of fragments of duplex DNA. These three-stranded complexes were protected from the action of DNA polymerase. When treated with DNA polymerase, unprotected duplex fragments were converted to fragments with blunt ends, whereas protected fragments retained their cohesive ends. By using conditions that greatly favored ligation of cohesive ends, a second DNA fragment could be selectively ligated to a previously protected fragment of DNA. When this second DNA was a vector, selected fragments were preferentially cloned. The method had sufficient power to be used for the isolation of single-copy genes directly from yeast or human genomic DNA, and potentially could allow the isolation of much longer fragments with greater fidelity than obtainable by using PCR.  相似文献   

7.
Stable three-stranded DNA made by RecA protein.   总被引:15,自引:8,他引:15       下载免费PDF全文
When RecA protein, in the form of a nucleoprotein filament containing circular single-stranded DNA (plus strand only), reacts with homologous linear duplex DNA, a directional transfer ensues of a strand from the duplex DNA to the nucleoprotein filament, resulting in the displacement of the linear plus strand in the 5' to 3' direction. The initial homologous synapsis, however, can occur at either end of the duplex DNA, or anywhere in between, and when homology is restricted to different regions of the duplex DNA, the joint molecules that form in each region show striking differences in stability upon deproteinization: distal joints greater than proximal joints much greater than medial joints. In the deproteinized distal joints, which are thermostable, 2000 nucleotide residues of the circular plus strand are resistant to P1 nuclease; both strands of the original duplex DNA remain resistant to P1 nuclease, and the potentially displaceable linear plus strand, which has a 3' homologous end, remains resistant to Escherichia coli exonuclease I. These observations suggest that RecA protein promotes homologous pairing and strand exchange via long three-stranded DNA intermediates and, moreover, that, once formed, such triplex structures in natural DNA are stable even when RecA protein has been removed.  相似文献   

8.
The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems.  相似文献   

9.
Unwinding of double-stranded DNA helix by dehydration.   总被引:9,自引:7,他引:9       下载免费PDF全文
Conformation changes of the double-stranded DNA helix in response to dehydration were investigated by monitoring, by agarose gel electrophoresis, the linking number of covalently closed circular DNA generated by ligation of linear DNA in the presence of different organic solvents or different temperatures. It was found that: (i) The DNA helix unwinds upon addition of certain organic solvents or elevation of temperature. (ii) The conformational change observed under the experimental conditions is a continuous process in response to the organic solvent concentration. (iii) The delta H of unwinding one linking of the DNA helix is constant at approximately 12.2 +/- 0.4 kcal/mol (1 kcal = 4.184 kJ); the corresponding delta S and d(delta S)/dn are 2nkR and 2kR, in which n is the relative equivalent linking number (referred to the state of delta S = 0 for unwinding) of the DNA, R is the gas constant, and k is equal to 1117/number of base pairs. The delta H, delta S, and d(delta S)/dn for unwinding i linkings are i X 12.2 kcal/mol, 2inkR, and 2ikR, respectively. (iv) d(delta S)/dn, like k, is inversely proportional to the number of base pairs in DNA. (v) Double-stranded DNAs of different chain lengths have average delta S = 35 cal/mol.K for unwinding one linking under the experimental conditions; this corresponds to 127 +/- 14 base pairs per "relative linking."  相似文献   

10.
Regulation of actin-activated ATP hydrolysis by arterial myosin.   总被引:4,自引:1,他引:4       下载免费PDF全文
Myosin was isolated from the main pulmonary artery of swine and was phosphorylated or dephosphorylated by utilizing the endogenous kinase or phosphatase, respectively. The myosins, phosphorylated to various degrees, were purified free of kinase and phosphatase activities by gel filtration on Sepharose CL-4B agarose columns. The level of actin-activated ATPase activity was dependent upon the degree of myosin light chain phosphorylation. Fully phosphorylated myosin reconstituted with actin and tropomyosin (actin/tropomyosin = 61:1) had the highest ATPase activity (0.1 mumol of Pi/mg . min). The actin-activated ATPase activity showed maximal (60--65%) Ca2+ sensitivity at 2 mol of Ca2+ bound per mol of myosin. The actin-activated ATPase activity, Ca2+ binding, and Ca2+ sensitivity of arterial myosin were also dependent upon Mg2+ concentration. The ATPase activity was maximal at 2--3 mM Mg2+ and, at low (0.5 mM) Mg2+ concentration, the activity was only one-third of the maximal activity. Increasing the Mg2+ above 3 mM was not associated with a further increase in ATPase activity, but the Ca2+ binding and Ca2+ sensitivity decreased with increasing Mg2+ concentration. The maximal Ca2+ sensitivity was observed at 2--3 mM Mg2+, a concentration at which the myosin bound 2 mol of Ca2+/mol. Both the ATPase activity and the Ca2+ sensitivity were more remarkable when actin that contained tropomyosin was used to activate the ATPase activity. The data indicate that calcium regulates the actin-activated ATP hydrolysis not only by its effects on the phosphorylation system but also by direct binding to the myosin.  相似文献   

11.
The Holliday junction (HJ), a cross-shaped structure that physically links the two DNA helices, is a key intermediate in homologous recombination, DNA repair, and replication. Several helicase-like proteins are known to bind HJs and promote their branch migration (BM) by translocating along DNA at the expense of ATP hydrolysis. Surprisingly, the bacterial recombinase protein RecA and its eukaryotic homologue Rad51 also promote BM of HJs despite the fact they do not bind HJs preferentially and do not translocate along DNA. RecA/Rad51 plays a key role in DNA double-stranded break repair and homologous recombination. RecA/Rad51 binds to ssDNA and forms contiguous filaments that promote the search for homologous DNA sequences and DNA strand exchange. The mechanism of BM promoted by RecA/RAD51 is unknown. Here, we demonstrate that cycles of RecA/Rad51 polymerization and dissociation coupled with ATP hydrolysis drives the BM of HJs.  相似文献   

12.
The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound to the RecA protein primary site. We conclude that the specificity reflects an intrinsic property of the secondary site of RecA protein rather than an interaction between DNa molecules within nucleoprotein filament--i.e., self-recognition. The secondary DNA binding site displays a higher affinity for ssDNA than for double-stranded DNA, and the binding of ssDNA to the secondary site strongly inhibits DNA strand exchange. We suggest that the secondary binding site has a dual role in DNA strand exchange. During the homology search, it binds double-stranded DNA weakly; upon finding local homology, this site binds, with higher affinity, the ssDNA strand that is displaced during DNA strand exchange. These characteristics facilitate homologous pairing, promote stabilization of the newly formed heteroduplex DNA, and contribute to the directionality of DNA strand exchange.  相似文献   

13.
The RuvA and RuvB proteins of Escherichia coli act late in recombination and DNA repair to catalyze the branch migration of Holliday junctions made by RecA. In this paper, we show that addition of RuvAB to supercoiled DNA that is bound by RecA leads to the rapid dissociation of the RecA nucleoprotein filament, as determined by a topological assay that measures DNA underwinding and a restriction endonuclease protection assay. Disruption of the RecA filament requires RuvA, RuvB, and hydrolysis of ATP. These findings suggest several important roles for the RuvAB helicase during genetic recombination and DNA repair: (i) displacement of RecA filaments from double-stranded DNA, (ii) interruption of RecA-mediated strand exchange, (iii) RuvAB-catalyzed branch migration, and (iv) recycling of RecA protein.  相似文献   

14.
In the structure of bovine F1-ATPase determined at 1.95-A resolution with crystals grown in the presence of ADP, 5'-adenylyl-imidodiphosphate, and azide, the azide anion interacts with the beta-phosphate of ADP and with residues in the ADP-binding catalytic subunit, betaDP. It occupies a position between the catalytically essential amino acids, beta-Lys-162 in the P loop and the "arginine finger" residue, alpha-Arg-373, similar to the site occupied by the gamma-phosphate in the ATP-binding subunit, betaTP. Its presence in the betaDP-subunit tightens the binding of the side chains to the nucleotide, enhancing its affinity and thereby stabilizing the state with bound ADP. This mechanism of inhibition appears to be common to many other ATPases, including ABC transporters, SecA, and DNA topoisomerase IIalpha. It also explains the stimulatory effect of azide on ATP-sensitive potassium channels by enhancing the binding of ADP.  相似文献   

15.
Farr's assay using double-stranded (ds) DNA from E. coli is a most sensitive and specific method for the detection of anti ds-DNA antibodies in patients with systemic lupus erythematosus (SLE). Because of the lack of sufficient DNA antigens, however, final antibody titers were hardly determined when the sera contained antibodies titered more than 100U/ml (or more than 60 per cent by DNA binding activities). In such sera DNA binding activities were measured by using ds-DNA tracer adjusted final concentration of NaCl to 125 mM. Higher binding activities measured by high-salt tracer are obtained significantly in SLE patients groups with nephrotic syndrome, proteinuria, cast, renal failure, diffuse proliferative nephritis, low serum complement levels, anemia and/or low IgG/IgA levels compared with the patients who lacked these clinical findings. In contrast the patients with digital rash or cramp showed significantly lower high-salt binding activities. The patients with pleuropericarditis tended to have lower bindings. The non-lupus patients including MCTD also had lower levels. These clinical characteristics could not be evaluated by standard Farr's assay. High-salt bindings suggest the presence of high avidity antibodies and also partly may mean the high levels of low avidity antibodies. The application of high-salt binding activities, thus, is a useful tool for the evaluation of clinical characteristics of SLE patients who had high levels of anti ds-DNA antibodies by standard Farr's assay.  相似文献   

16.
Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates ≈1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.  相似文献   

17.
The Lymn-Taylor model for the actomyosin ATPase suggests that during each cycle of ATP hydrolysis the complex of myosin subfragment 1 (S-1) with actin must dissociate into S-1.ATP plus actin before ATP hydrolysis can occur. In the present study we tested whether such a mandatory detachment step occurs by measuring the effect of actin on the rate and magnitude of the ATP hydrolysis step (initial Pi burst) and on the steady-state ATPase rate. We find that the rate of the initial Pi burst markedly increases at high actin concentration although the Lymn-Taylor model predicts the rate should remain nearly constant or decrease. In addition, at high actin concentration, the magnitude of the initial Pi burst is much larger than is predicted by the Lymn-Taylor model. Finally, at 360 microM actin, at which more than 90% of the S-1.ATP is bound to actin, there is no inhibition of the steady-state ATPase activity although the Lymn-Taylor model predicts that 70% inhibition should occur. We conclude that the acto-S-1 complex is not dissociated by ATP during each cycle of ATP hydrolysis; in fact, the rate of the initial Pi burst appears to be even faster when S-1.ATP is bound to actin than when it is dissociated.  相似文献   

18.
The immunochemical specificity of the immunofluorescent Crithidia luciliae method for detection of antibodies to double-stranded DNA (dsDNA) was confirmed by demonstrating abolition of staining by DNase digestion and by absorption with dsDNA. This method was less sensitive than a Millipore filter method for detecting antibodies to DNA. It was positive only in subjects with systemic lupus erythematosus or drug-induced antinuclear factors. This technique appears suitable for study of the immunochemical characteristics fo antibodies to dsDNA.  相似文献   

19.
Stoichiometry of GTP hydrolysis and tubulin polymerization.   总被引:4,自引:0,他引:4       下载免费PDF全文
Microtubule formation from lamb brain tubulin isolated by affinity chromatography and freed of exchangeable nucleotide requires GTP for maximal rate and extent of polymerization. The nucleotide analogs guanylylmethylenediphosphate and guanylylimidodiphosphate fail to replace GTP; in addition, neither the presence of microtubule associated proteins nor 5 M glycerol relieves the GTP requirement. The relation of GTP concentration and microtubule formation shows an association constant K = 1 X 10(4) M-1; furthermore, GDP and guanylylimidodiphosphate are competitive inhibitors of GTP for polymerization. Using a rapid filter assay for microtubule formation that allows the quantitative analysis of early polymerization kinetics and correcting for GTP hydrolysis uncoupled from tubulin polymerization, a stoichiometry of two molecules of GTP hydrolyzed per mole of tubulin dimer incorporated into microtubules has been found.  相似文献   

20.
Hybridization of RNA to double-stranded DNA: formation of R-loops.   总被引:33,自引:0,他引:33       下载免费PDF全文
RNA can hybridize to double-stranded DNA in the presence of 70% formamide by displacing the identical DNA strand. The resulting structure, called an R-loop, is formed in formamide probably because of the greater thermodynamic stability of the RNA-DNA hybrid when it is near the denaturation temperature of duplex DNA. The rate of R-loop formation is maximal at the temperature at which half of the duplex DNA is irreversibly converted to single-stranded DNA (the strand separation temperature of tss) of the duplex DNA and falls precipitously a few degrees above or below that temperature. This maximal rate is similar to the rate of hybridization of RNA to single-stranded DNA under the same conditions. At temperatures above the tss the rate is proportional to the RNA concentration. However, at temperatures below tss the rate of R-loop formation is less dependent upon the RNA concentration. Once formed, the R-loops display considerable stability; the formamide can be removed and the DNA can be cleaved with restriction endonucleases without loss of R-loop structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号