首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The purpose of this study was to investigate the dependence of volume dose indices on dose calculation algorithms for volumetric modulated arc therapy (VMAT) for stereotactic body radiotherapy (SBRT) plans to treat peripheral lung tumors by comparing them with those of Monte Carlo (MC) calculations. VMAT-SBRT plans for peripheral lung tumors were created using the Eclipse treatment planning system (TPS) for 24 patients with nonsmall cell lung cancer. VMAT dose distributions for gross tumor volume (GTV), internal target volume (ITV), and planning target volume (PTV) were calculated using the analytical anisotropic algorithm (AAA), the Acuros XB (AXB) algorithm, and a MC algorithm. VMAT dose distributions of the 3 algorithms were compared using their volume dose indices from dose volume histograms (DVHs), a dose difference map, and 3-dimensional gamma analysis. The DVHs for GTV and ITV from AAA, AXB, and MC were in good agreement. The difference between the ITV and PTV volume dose indices from AAA and MC increased as D98, D95, D80, D50, and D2. In particular, the difference between D98 for PTV from AAA and MC was up to 48%. A >5% difference between D95 for PTV from AAA and MC was 11 patients, but only 2 patients for ITV. The volume dose indices for AXB were near those of MC. AAA tended to overestimate the PTV volume dose indices compared to AXB and MC. Thus, we propose that the volume dose indices for the ITV be used because they are independent of dose calculation algorithms.  相似文献   

2.
The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-Dm and AXB-Dw) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs.  相似文献   

3.
The purpose of this study was to verify the accuracy of dose calculation algorithms of a treatment planning system for a single-isocenter volumetric modulated arc therapy (VMAT) plan in multiple brain metastases, by comparing the dose distributions of treatment planning system with those of Monte Carlo (MC) simulations. We used a multitarget phantom containing 9 acrylic balls with a diameter of 15.9 mm inside a Lucy phantom measuring 17 × 17 × 17 cm3. Seven VMAT plans were created using the multitarget phantom: 1 multitarget plan (MTP) and 6 single target plans (STP). Three of the STP plans had a large jaw field setting, almost equivalent to that of the MTP, while the other plans had a jaw field setting fitted to each planning target volume. The isocenter for all VMAT plans was set to the center of the phantom. The VMAT dose distributions were calculated using the analytical anisotropic algorithm (AAA) and were also recalculated through Acuros XB (AXB) and MC simulations under the same irradiation conditions. The AAA and AXB methods tended to overestimate dosage compared with the MC method in the MTP and in STPs with large jaw field settings. The dose distribution in single-isocenter VMAT plans for multiple brain metastases was influenced by jaw field settings. Finally, we concluded that MC-VMAT dose calculations are useful for 3D dose verification of single-isocenter VMAT plans for multiple brain metastases.  相似文献   

4.
目的 比较Monaco和Pinnacle 2套计划系统设计的肺癌容积旋转调强(VMAT)计划的计划质量、治疗效率和剂量验证精度.方法 选取20例肺癌病例,其中左肺癌10例,右肺癌10例,分别利用Monaco 3.0和Pinnacle 9.2两套计划系统设计VMAT计划,比较2种计划的靶区适形度、均匀性、最大剂量(Dmax)、平均剂量(Dmean)与最小剂量(Dmin)及危及器官的受照剂量;比较治疗计划执行时间、机器跳数和剂量验证的准确性.结果 除PTV的Dmin外,Monaco计划靶区的其他各项剂量学指标都明显优于Pinnacle(t=5.927~12.034,P<0.05);2种计划除患侧肺V10、全肺V5外,Monaco计划肺的其他剂量学指标都差于Pinnacle(t=3.545~7.485,P<0.05),Monaco计划对心脏的保护明显优于Pinnacle(t=2.836~4.011,P<0.05),但较差的是Monaco计划执行时间(t=9.780,P<0.05)和MU数量(t=5.304,P<0.05).Monaco计划的Delta4验证结果优于Pinnacle(t=4.937,P<0.05).结论 对于肺癌的VMAT计划,Monaco与 Pinnacle两套计划系统都能满足临床应用要求;Pinnacle在肺的保护与计划执行方面有明显的优势,Monaco在靶区剂量分布和心脏的保护,以及剂量验证方面具有优势.  相似文献   

5.
Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification.  相似文献   

6.

Purpose

The Acuros? XB dose calculation algorithm by Varian and the Monte Carlo algorithm XVMC by Brainlab were compared with each other and with the well-established AAA algorithm, which is also from Varian.

Methods

First, square fields to two different artificial phantoms were applied: (1) a “slab phantom” with a 3?cm water layer, followed by a 2?cm bone layer, a 7?cm lung layer, and another 18?cm water layer and (2) a “lung phantom” with water surrounding an eccentric lung block. For the slab phantom, depth–dose curves along central beam axis were compared. The lung phantom was used to compare profiles at depths of 6 and 14?cm. As clinical cases, the CTs of three different patients were used. The original AAA plans with all three algorithms using open fields were recalculated.

Results

There were only minor differences between Acuros and XVMC in all artificial phantom depth doses and profiles; however, this was different for AAA, which had deviations of up to 13% in depth dose and a few percent for profiles in the lung phantom. These deviations did not translate into the clinical cases, where the dose–volume histograms of all algorithms were close to each other for open fields.

Conclusion

Only within artificial phantoms with clearly separated layers of simulated tissue does AAA show differences at layer boundaries compared to XVMC or Acuros. In real patient CTs, these differences in the dose–volume histogram of the planning target volume were not observed.  相似文献   

7.
《Medical Dosimetry》2014,39(3):276-281
The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode array phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient׳s structures using the resultant “PDP” beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3 mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3 mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0.74). Moreover, clinically relevant differences increased with increasing QA passing rate, indicating that some of the largest dose differences occurred in the cases of high QA passing rates, which may be called “false negatives.” The clinical importance of any disagreement between the measured and the calculated dose is often difficult to interpret; however, beam errors (either in delivery or in TPS calculation) can affect the effectiveness of the patient dose. Further research is needed to determinate the role of a PDP-type algorithm to accurately estimate patient dose effect.  相似文献   

8.

Outline

To address the correspondence of measured and predicted doses for different malignant tumours utilizing various gamma criteria and QA for confirmation of VMAT with an EPID and 2D array detector.

Methods

24 patients with different malignant tumors were treated by VMAT techniques on Varian IX linear accelerator with 6 MV photon beams. Eclipse treatment planning system (TPS) is used to plan Patient’s charts. Gamma Index (GI) variation was compared to the procedure of pre-treatment verification in VMAT plans.

Results

The gamma criteria (DD/DTA) of dose difference and distance to agreement for (3%/3?mm), mean?±?SD are γ≤1%?=?99.42%?±?0.67%, γmax?=?2.11?±?0.56 and γavg?=?0.19?±?0.05 by EPID, and γ%≤1?=?99.36%?±?0.53%, γmax?=?1.65?±?0.45 and γavg?=?0.22?±?0.05 by using 2D array detector.

Conclusions

Specific QA of VMAT patient (using EPID or 2D array) display great possibility to spare time and to verify individual IMRT fields. 3%/3?mm is the most appropriate of gamma criteria (DD/DTA) for VMAT plans quality assurance. Control charts are a beneficial method for verification assessment for patient specific quality control.  相似文献   

9.
The purpose of this study was to establish intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans for synchronous bilateral breast cancer (SBBC) and to compare those plans with the previous treatment plans using 3D conformal radiation therapy (3DCRT). The differences among the treatments were also statistically compared regarding dosimetry distribution and treatment efficiency. The research was conducted with 10 SBBC patients. The study established IMRT (12 fields with a single isocenter) and VMAT (2 partial arcs with a single isocenter) treatment plans for SBBC patients and then compared those plans with 3DCRT (8 fields with multiple isocenters). The plans were evaluated based on a dose-volume histogram analysis. For planning target volumes (PTVs), the mean doses and the values of V95%, V105%, conformity index, and homogeneity index were reported. For the organs at risk, the analysis included the mean dose, maximum dose, and VXGy, depending on the organs (lungs, heart, and liver). To objectively evaluate the efficiency of the treatment plans, each plan's beam times, treatment times (including set-up time), and monitor units were compared. Tukey test and one-way analysis of variance were used to compare the PTV and organs at risk values of the 3 techniques. Additionally, the independent-samples t-test was used to compare the 2 techniques (IMRT and VMAT) based on the values of Rt. PTV and Lt. PTV (p?<?0.05). For PTV dose distribution, IMRT showed increases of approximately 1.2% in Dmean and of approximately 5.7% in V95% dose distribution compared with 3DCRT. In comparison to VMAT, 3DCRT showed about 3.0% higher dose distribution in Dmean and V95%. IMRT was the best in terms of conformity index and homogeneity index (p?<?0.05), whereas 3DCRT and VMAT did not significantly differ from each other. In terms of dose distribution on lungs, heart, and liver, the percentage of volume at high doses such as V30Gy and V40Gy was approximately 70% lower for IMRT and approximately 40% lower for VMAT than for 3DCRT. For distribution volumes of low doses such as V5% and V10%, that for 3DCRT was approximately 60% smaller than for IMRT and approximately 70% smaller than for VMAT. Comparison between IMRT and VMAT showed that the IMRT was superior in all distribution factors. VMAT showed better treatment efficiency than 3DCRT or IMRT. Among the SBBC radiotherapy treatment plans, IMRT was superior to 3DCRT and VMAT in terms of PTV dose distribution, whereas VMAT showed the most outstanding treatment efficiency.  相似文献   

10.
11.
《Medical Dosimetry》2022,47(1):e7-e12
Stereotactic radiosurgery (SRS) is increasingly being used to manage solitary or multiple brain metastasis. This study aims to compare and validate Anisotropic Analytical Algorithm (AAA) and AcurosXB (AXB) algorithms of Eclipse Treatment Planning System (TPS) in RapidArc-based SRS plans of patients with solitary brain metastasis. Twenty patients with solitary brain metastasis who have been already treated with RapidArc SRS plans calculated using AAA plans were selected for this study. These plans were recalculated using AXB algorithm keeping the same arc orientations, multi-leaf collimator apertures, and monitor units. The two algorithms were compared for target coverage parameters, isodose volumes, plan quality metrics, dose to organs at risk and integral dose. The dose calculated by the TPS using AAA and AXB algorithms was validated against measured dose for all patient plans using an in-house developed cylindrical phantom. An Exradin A14SL ionization chamber was positioned at the center of this phantom to measure the in-field dose. NanoDot Optically Stimulated Luminescent Dosimeters (OSLDs) (Landauer Inc.) were placed at distances 3.0 cm, 4.0 cm, 5.0 cm, and 6.0 cm respectively from the center of the phantom to measure the non-target dose. In addition, the planar dose distribution was measured using amorphous silicon aS1000 Electronic Portal Imaging Device. The measured 2D dose distribution was compared against AAA and AXB estimated 2D distribution using gamma analysis. All results were tested for significance using the paired t-test at 5% level of significance. Significant differences between the AAA and AXB plans were found only for a few parameters analyzed in this study. In the experimental verification using cylindrical phantom, the difference between the AAA calculated dose and the measured dose was found to be highly significant (p < 0.001). However, the difference between the AXB calculated dose and the measured dose was not significant (p = 0.197). The difference between AAA/AXB calculated and measured at non-target locations was statistically insignificant at all four non-target locations and the dose calculated by both AAA and AXB algorithms shows a strong positive correlation with the measured dose. The results of the gamma analysis show that the AXB calculated planar dose is in better agreement with measurements compared to the AAA. Even though the results of the dosimetric comparison show that the differences are mostly not significant, the measurements show that there are differences between the two algorithms within the target volume. The AXB algorithm may be therefore more accurate in the dose calculation of VMAT plans for the treatment of small intracranial targets. For non-target locations either algorithm can be used for the estimation of dose accounting for their limitations in non-target dose estimations.  相似文献   

12.
《Medical Dosimetry》2014,39(4):309-313
Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.  相似文献   

13.
The use of sophisticated techniques such as gating and tracking treatments requires additional quality assurance to mitigate increased patient risks. To address this need, we have developed and validated an in vivo method of dose delivery verification for real-time aperture tracking techniques, using an electronic portal imaging device (EPID)-based, on-treatment patient dose reconstruction and a dynamic anthropomorphic phantom. Using 4DCT scan of the phantom, ten individual treatment plans were created, 1 for each of the 10 separate phases of the respiratory cycle. The 10 MLC apertures were combined into a single dynamic intensity-modulated radiation therapy (IMRT) plan that tracked the tumor motion. The tumor motion and linac delivery were synchronized using an RPM system (Varian Medical Systems) in gating mode with a custom breathing trace. On-treatment EPID frames were captured using a data-acquisition computer with a dedicated frame-grabber. Our in-house EPID-based in vivo dose reconstruction model was modified to reconstruct the 4D accumulated dose distribution for a dynamic MLC (DMLC) tracking plan using the 10-phase 4DCT dataset. Dose estimation accuracy was assessed for the DMLC tracking plan and a single-phase (50% phase) static tumor plan, represented a static field test to verify baseline accuracy. The 3%/3 mm chi-comparison between the EPID-based dose reconstruction for the static tumor delivery and the TPS dose calculation for the static plan resulted in 100% pass rate for planning target volume (PTV) voxels while the mean percentage dose difference was 0.6%. Comparing the EPID-based dose reconstruction for the DMLC tracking to the TPS calculation for the static plan gave a 3%/3 mm chi pass rate of 99.3% for PTV voxels and a mean percentage dose difference of 1.1%. While further work is required to assess the accuracy of this approach in more clinically relevant situations, we have established clinical feasibility and baseline accuracy of using the transmission EPID-based, in vivo patient dose verification for MLC-tracking treatments.  相似文献   

14.
目的 应用深度学习神经网络高精度预测非小细胞肺癌(NSCLC)患者容积旋转调强放疗(VMAT)计划的剂量分布。方法 基于Res-Unet基础网络引入大核空洞卷积模块和多头注意力(MHA)机制构建了MHA-resunet网络。在此基础上,以随机数表法从上千例接受VMAT放疗NSCLC患者中选取151例患者,以CT图像、计划靶区(PTV)与危及器官(OARs)轮廓作为输入,以剂量分布图作为输出训练神经网络。然后将该网络的性能与常用的几种网络的性能进行比较,通过PTV与OARs内的体素级平均绝对误差(MAE)和临床剂量体积指标误差对网络性能进行评估。结果 基于MHA-resunet网络的预测剂量与真实计划剂量的平均绝对误差在靶区内为1.51 Gy,靶区的D98D95误差均<1 Gy。与Res-Unet、Atten-Unet、DCNN 3种常用网络比较,MHA-resunet在靶区与除心脏外的OARs内的剂量误差均为最小。结论 MHA-resunet网络通过提高感受野来学习靶区与危及器官的相对位置关系,能够准确地预测接受VMAT放疗的NSCLC患者的剂量分布。  相似文献   

15.
目的 比较胸中下段食管癌3种放疗技术心脏和肺的剂量分布。方法 搜集2015年1月至2016年2月在浙江省肿瘤医院接受治疗的15例胸中下段食管鳞癌患者资料。患者均接受胸部放射治疗,每位患者共制作3套放疗计划。调强放疗(IMRT)和容积旋转调强放疗(VMAT)在RayStation 4.0v系统制作,螺旋断层放疗(TOMO)在TomoHTM Version 2.0.5系统制作。处方剂量60 Gy/30次。比较计划体积(PTV)、心脏、心脏亚单位以及肺剂量参数。结果 PTV、心脏和肺的平均体积为(399±355)、(671±274)和(3 907±1 717) cm3。与IMRT和VMAT相比,TOMO可以降低PTV、心脏、左心房及肺的最大剂量(H=10.889、7.433、12.080、11.401,P<0.05)。3种放疗技术的适形指数和均匀性指数差异无统计学意义(P>0.05)。结论 相较于IMRT和VMAT,TOMO可以降低PTV、心脏、左心房和肺的最大剂量,但均匀性及适形性差异无统计学意义。放疗过程中心脏与肺存在相互影响,TOMO技术可能带来的临床优势尚待进一步研究证实。  相似文献   

16.
This study aimed to verify the validity of generating treatment plans for volumetric arc therapy (VMAT) for prostate cancer using magnetic resonance (MR) imaging with a dose calculation algorithm in Acuros XB (Eclipse version 13.6; Varian Medical Systems, Palo Alto, CA, USA) based on deterministically solving the linear Boltzmann transport equations. Four different classes were applied to prostate MR images: MRW (all water equivalent); MRW+B (water and bone); MRS+B (soft tissue and bone); and MRS+B+G (soft tissue, bone, and rectal gas). Each of these regions was assigned a mass density for calculating doses. The assigned mass-density values were then altered in three ways. Using initial planning and optimization parameters, MR-based VMAT plans were generated and compared with corresponding forward-calculated computed tomography-based plans for doses to the target volumes and organs at risk using dose-volume histograms and γ analyses. In the MRW plans, the mean doses for TVs were overestimated by approximately 1.3%. The MRW+B plans revealed reduced differences within 0.5%. Further segmentation (MRS+B) did not result in substantial improvement. Dose deviations affected by the changes in the mass densities assigned to soft tissue were as small as approximately 1.0%, whereas larger deviations were revealed in bone and rectal gas, especially those with >?5% error. Assignment of accurate mass-density values acquired from MR images is needed for MR-based radiation treatment planning. Multiple MR sequences should be acquired for segmentation and mass-density conversion purposes. Segmented MR-based VMAT planning is feasible with a density assignment method using Acuros XB.  相似文献   

17.
Gas-filled temporary tissue expanders (TTEs), implanted to assist in post mastectomy breast reconstructions, are expected to produce increased dosimetric uncertainty in breast radiotherapy treatments, due to their containing both a substantial metallic component and a comparatively large volume of gas. This study therefore builds on previous investigations of the dosimetric effects of gas-filled TTEs in static photon and electron beams, by examining the effects of these implants on dose distributions from common modulated rotational treatment techniques; volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT). Radiochromic film measurements were used to evaluate the accuracy of VMAT and HT dose calculations, for a humanoid phantom augmented with a sample Aeroform CO2-filled TTE (AirXpanders Inc, San Jose, USA) as well as purpose-designed and 3D printed “breast tissue.” Results showed that the TomoTherapy Hi-Art VoLO convolution-superposition algorithm (Accuray Inc, Sunnyvale, USA) produced comparatively accurate calculations of treatment dose within this complex phantom, including immediately anterior and posterior to the TTE. The Varian Eclipse Acuros (AXB) algorithm generally showed better agreement with the film measurement than the Varian Eclipse AAA algorithm (Varian Medical Systems, Palo Alto, USA), although the film measurements showed regions of 5% to 10% disagreement with both AAA and AXB in the dosimetrically-challenging region on the anterior side of the implant. Although the Aeroform CO2-filled TTE has substantial and obvious effects on the downstream dose from a static photon beam, the results of this study showed how inverse-planning of modulated rotational radiotherapy treatments can produce modulated fluence distributions that compensate for the dramatic density heterogeneities in the implant. Despite some disagreements with the planned dose, all film measurements showed that the use of inverse-planned modulated rotational photon beams resulted in comparatively homogeneous coverage of the radiotherapy target, in the complex patient-like phantom with a gas-filled TTE. Due to the importance of matching each planned fluence distribution to the density distribution within each TTE, careful use of available 3D imaging techniques is advisable, when modulated rotational radiotherapy treatments are delivered to patients with gas-filled TTEs.  相似文献   

18.
The purpose of this study is to evaluate the performance of dose calculation algorithms used in radiotherapy treatment planning systems (TPSs) in comparison with Monte Carlo (MC) simulations in nonelectronic equilibrium conditions. MC simulations with PENELOPE package were performed for comparison of doses calculated by pencil beam convolution (PBC), analytical anisotropy algorithm (AAA), and Acuros XB TPS algorithms. Relative depth dose curves were calculated in heterogeneous water phantoms with layers of bone (1.8?g/cm3) and lung (0.3?g/cm3) equivalent materials for radiation fields between 1?×?1?cm2 and 10?×?10?cm2. Analysis of relative depth dose curves at the water-bone interface shows that PBC and AAA algorithms present the largest differences to MC calculations (uMC?=?0.5%), with maximum differences of up to 4.3% of maximum dose. For the lung-equivalent material and 1?×?1?cm2 field, differences can be up to 24.3% for PBC, 11.5% for AAA, and 7.5% for Acuros. Results show that Acurus presents the best agreement with MC simulation data with equivalent accuracy for modeling radiotherapy dose deposition especially in regions where electronic equilibrium does not hold. For typical (nonsmall) fields used in radiotherapy, AAA and PBC can exhibit reasonable agreement with MC results even in regions of heterogeneities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号