首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light-harvesting II (LHII) structural genes coding for the (B800-B850 complex) β- and α-polypeptides have been cloned and the nucleotide and deduced polypeptide sequences have been determined. This completes the sequencing of all seven structural genes coding for the structural polypeptides of the photosynthetic apparatus that bind the pigments and cofactors participating in the primary light reactions of photosynthesis. Unlike the structural genes coding for the reaction center L, M, and H subunits and the light-harvesting I (LHI) (B870 complex) structural polypeptides, the LHII structural genes are not within the 46-kilobase photosynthetic gene cluster carried by the R-prime plasmid pRPS404. Identical organization of the β and α structural genes for both LHI and LHII and sequence homologies between the two β-polypeptides and between the two α-polypeptides suggests that both complexes arose by gene duplication from a single ancestral light-harvesting complex and that the putative bacteriochlorophyll binding sequence Ala-X-X-X-His has been absolutely conserved.  相似文献   

2.
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.  相似文献   

3.
We report femtosecond transient absorption studies of energy transfer dynamics in the B800-850 light-harvesting complex (LHC) of Rhodobacter sphaeroides 2.4.1. For complexes solubilized in lauryldimethylamine-N-oxide (LDAO), the carotenoid to bacteriochlorophyll (Bchl) B800 and carotenoid to Bchl B850 energy transfer times are 0.34 and 0.20 ps, respectively. The B800 to B850 energy transfer time is 2.5 ps. For complexes treated with lithium dodecyl sulfate (LDS), a carotenoid to B850 energy transfer time of less than or equal to 0.2 ps is seen, and a portion of the total carotenoid population is decoupled from Bchl. In both LDAO-solubilized and LDS-treated complexes an intensity-dependent picosecond decay component of the excited B850 population is ascribed to excitation annihilation within minimal units of the LHC.  相似文献   

4.
Adaptive femtosecond pulse shaping in an evolutionary learning loop is applied to a bioinspired dyad molecule that closely mimics the early-time photophysics of the light-harvesting complex 2 (LH2) photosynthetic antenna complex. Control over the branching ratio between the two competing pathways for energy flow, internal conversion (IC) and energy transfer (ET), is realized. We show that by pulse shaping it is possible to increase independently the relative yield of both channels, ET and IC. The optimization results are analyzed by using Fourier analysis, which gives direct insight to the mechanism featuring quantum interference of a low-frequency mode. The results from the closed-loop experiments are repeatable and robust and demonstrate the power of coherent control experiments as a spectroscopic tool (i.e., quantum-control spectroscopy) capable of revealing functionally relevant molecular properties that are hidden from conventional techniques.  相似文献   

5.
Ultraviolet-B photodestruction of a light-harvesting complex.   总被引:11,自引:0,他引:11       下载免费PDF全文
Cyanobacteria are important contributors to global photosynthesis in both marine and terrestrial environments. Quantitative data are presented on UV-B-induced damage to the major cyanobacterial photosynthetic light harvesting complex, the phycobilisome, and to each of its constituent phycobiliproteins. The photodestruction quantum yield, phi295 nm, for the phycobiliproteins is high (approximately 10(-3), as compared with approximately 10(-7) for visible light). Energy transfer on a picosecond time scale does not compete with photodestruction. Photodamage to phycobilisomes in vitro and in living cells is amplified by causing dissociation and loss of function of the complex. In photosynthetic organisms, UV-B damage to light-harvesting complexes may significantly exceed that to DNA.  相似文献   

6.
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm−1. Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S2 state to the lower excited state S1. We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.

Electronic and vibrational degrees of freedom are the most important physical quantities in molecular systems at interfaces and surfaces. Knowledge of interactions between electronic and vibrational motions, namely electronic–vibrational couplings, is essential to understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Many excited-states relaxation processes occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, and so on (111). These relaxation processes are intimately related to the electronic–vibrational couplings at interfaces and surfaces. Strong electronic–vibrational couplings could promote nonadiabatic evolution of excited potential energy and thus, facilitate chemical reactions or intramolecular structural changes of interfacial molecules (10, 12, 13). Furthermore, these interactions of electronic and vibrational degrees of freedom are subject to solvent environments (e.g., interfaces/surfaces with a restricted environment of unique physical and chemical properties) (9, 14, 15). Despite the importance of interactions of electronic and vibrational motions, little is known about excited-state electronic–vibrational couplings at interfaces and surfaces.Interface-specific electronic and vibrational spectroscopies enable us to characterize the electronic and vibrational structures separately. As interface-specific tools, second-order electronic sum frequency generation (ESFG) and vibrational sum frequency generation (VSFG) spectroscopies have been utilized for investigating molecular structure, orientational configurations, chemical reactions, chirality, static potential, environmental issues, and biological systems at interfaces and surfaces (1652). Recently, structural dynamics at interfaces and surfaces have been explored using time-resolved ESFG and time-resolved VSFG with a visible pump or an infrared (IR) pump thanks to the development of ultrafast lasers (69, 1315, 49, 5361). Doubly resonant sum frequency generation (SFG) has been demonstrated to probe both electronic and vibration transitions of interfacial molecular monolayer (15, 6271). This frequency-domain two-dimensional (2D) interface/surface spectroscopy could provide information regarding electronic–vibrational coupling of interfacial molecules. However, contributions from excited states are too weak to be probed due to large damping rates of vibrational states in excited states (62, 63). As such, the frequency-domain doubly resonant SFG is used only for electronic–vibrational coupling of electronic ground states. Ultrafast interface-specific electronic–vibrational spectroscopy could allow us to gain insights into how specific nuclear motions drive the relaxation of electronic excited states. Therefore, development of interface-specific electronic–vibrational spectroscopy for excited states is needed.In this work, we integrate the specificity of interfaces and surfaces into the capabilities of ultrafast 2D spectroscopy for dynamical electronic–vibrational couplings in excited states of molecules; 2D interface-specific spectroscopies are analogous to those 2D spectra in bulk that spread the information contained in a pump−probe spectrum over two frequency axes. Thus, one can better interpret congested one-dimensional signals. Two-dimensional vibrational sum frequency generation (2D-VSFG) spectroscopy was demonstrated a few year ago (7274). Furthermore, heterodyne 2D-VSFG spectroscopy using middle infrared (mid-IR) pulse shaping and noncollinear geometry 2D-VSFG experiments have also been developed to study vibrational structures and dynamics at interfaces (31, 7578). Recently, two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy has also been demonstrated for surfaces and interfaces (79). On the other hand, bulk two-dimensional electronic–vibrational (2D-EV) spectroscopy has been extensively used to investigate the electronic relaxation and energy transfer dynamics of molecules, biological systems, and nanomaterials (8090). The 2D-EV technique not only provides electronic and vibrational interactions between excitons or different excited electronic states of systems but also, identifies fast nonradiative transitions through nuclear motions in molecules, aggregations, and nanomaterials. However, an interface-specific technique for two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy has yet to be developed.Here, we present the development of 2D-EVSFG spectroscopy for the couplings of electronic and nucleic motions at interfaces and surfaces. The purpose of developing 2D-EVSFG spectroscopy is to bridge the gap between the visible and IR regions to reveal how structural dynamics for photoexcited electronic states are coupled with vibrations at interfaces and surfaces. As an example, we applied this 2D-EVSFG experimental method to time evolution of electronic–vibrational couplings at excited states of interface-active molecules at the air–water interface.  相似文献   

7.
The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II.  相似文献   

8.
Electronic structure and dynamics determine material properties and behavior. Important time scales for electronic dynamics range from attoseconds to milliseconds. Two-dimensional optical spectroscopy has proven an incisive tool to probe fast spatiotemporal electronic dynamics in complex multichromophoric systems. However, acquiring these spectra requires long point-by-point acquisitions that preclude observations on the millisecond and microsecond time scales. Here we demonstrate that imaging temporally encoded information within a homogeneous sample allows mapping of the evolution of the electronic Hamiltonian with femtosecond temporal resolution in a single-laser-shot, providing real-time maps of electronic coupling. This method, which we call GRadient-Assisted Photon Echo spectroscopy (GRAPE), eliminates phase errors deleterious to Fourier spectroscopies while reducing the acquisition time by orders of magnitude using only conventional optical components. In analogy to MRI in which magnetic field gradients are used to create spatial correlation maps, GRAPE spectroscopy takes advantage of a similar type of spatial encoding to construct electronic correlation maps. Unlike magnetic resonance, however, this spatial encoding of the nonlinear polarization along the excitation frequency axis of the two-dimensional spectrum results in no loss in signal while simultaneously reducing overall noise. Correlating the energy transfer events and electronic coupling occurring in tens of femtoseconds with slow dynamics on the subsecond time scale is fundamentally important in photobiology, solar energy research, nonlinear spectroscopy, and optoelectronic device characterization.  相似文献   

9.
Interaction forces of membrane protein subunits are of importance in their structure, assembly, membrane insertion, and function. In biological membranes, and in the photosynthetic apparatus as a paradigm, membrane proteins fulfill their function by ensemble actions integrating a tight assembly of several proteins. In the bacterial photosynthetic apparatus light-harvesting complexes 2 (LH2) transfer light energy to neighboring tightly associated core complexes, constituted of light-harvesting complexes 1 (LH1) and reaction centers (RC). While the architecture of the photosynthetic unit has been described, the forces and energies assuring the structural and functional integrity of LH2, the assembly of LH2 complexes, and how LH2 interact with the other proteins in the supramolecular architecture are still unknown. Here we investigate the molecular forces of the bacterial LH2 within the native photosynthetic membrane using atomic force microscopy single-molecule imaging and force measurement in combination. The binding between LH2 subunits is fairly weak, of the order of kBT, indicating the importance of LH2 ring architecture. In contrast LH2 subunits are solid with a free energy difference of 90 kBT between folded and unfolded states. Subunit α-helices unfold either in one-step, α- and β-polypeptides unfold together, or sequentially. The unfolding force of transmembrane helices is approximately 150 pN. In the two-step unfolding process, the β-polypeptide is stabilized by the molecular environment in the membrane. Hence, intermolecular forces influence the structural and functional integrity of LH2.  相似文献   

10.
The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, , that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers.Frequent fluctuations in light intensity in the natural environment of green plants require a precise balance between light absorption for photosynthesis and photoprotection to avert photodamage. Under high-light conditions, plants receive more photons than they can use for photochemistry. The excess excitation energy is safely dissipated as heat by processes collectively known as nonphotochemical quenching (NPQ) (1, 2). The major component of NPQ, referred to as energy-dependent quenching (qE), is triggered by the pH gradient across the thylakoid membrane that results from the photosynthetic light reactions (2). qE is characterized by a decrease in chlorophyll (Chl) fluorescence quantum yield (1). Excessive light causes a drop in pH in the thylakoid lumen, which, in turn, activates the enzyme violaxanthin de-epoxidase (VDE) that converts violaxanthin (Vio) to zeaxanthin (Zea) in the xanthophyll cycle (2). Screening for qE-deficient Arabidopsis thaliana mutants led to the discovery that the photosystem II (PSII) subunit S (PsbS) is essential for NPQ (3). PsbS is considered a member of the light-harvesting complex (LHC) superfamily, although it is predicted to have four rather than three transmembrane helices (3). Studies with native PsbS and PsbS refolded in vitro have been inconsistent with respect to its pigment-binding ability (410). One interesting feature of PsbS is its reported pH-dependent dimer-to-monomer transition under high-light conditions, thought to be due to the protonation of luminal glutamates (11, 12). The dissociation of the PsbS dimer goes along with a change of location within the PSII supercomplex. Dimers appear to be mainly associated with the PSII core, whereas monomers associate with the major LHC of PSII (LHC-II) (12).It is a matter of debate how the main qE components LHC-II, PsbS, and Zea work together to switch reversibly from an energy-transmitting state to a quenched state. Several models have been proposed to explain the mechanism of excess energy dissipation. These include simple pigment exchange of Vio for Zea (13), aggregation (14) or an internal conformational change of LHC-II (15, 16), charge transfer quenching in minor LHCs (17, 18), and quenching by carotenoid (Car) S1-Chl interactions (19). On the basis of an earlier suggestion (20), a model for qE was put forward, which defines a role for PsbS as a transient pigment-binding protein on pH-induced monomerization (21). The proposed Chl-Car heterodimer (22) could then form between a Car bound transiently to PsbS and a peripheral Chl, for example, Chl 2 in LHC-II or one of the minor LHCs. In any case, the molecular mechanism by which PsbS functions in NPQ has yet to be determined. Whereas most previous in vitro studies were conducted with LHC-II (e.g., refs. 14, 2326) or PsbS (79) in detergent solution, we present here a proteoliposome system that combines LHC-II, Zea, and PsbS to study Chl fluorescence quenching directly in the membrane.  相似文献   

11.
The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in plants self-organizes in vitro. The recombinant apoprotein, denatured in dodecyl sulfate, spontaneously folds when it is mixed with its pigments, chlorophylls, and carotenoids in detergent solution, and assembles into structurally authentic LHCII in the course of several minutes. Pulse EPR techniques, specifically double-electron-electron resonance (DEER), have been used to analyze protein folding during this process. Pairs of nitroxide labels were introduced site-specifically into recombinant LHCII and shown not to affect the stability and function of the pigment-protein complex. Interspin distance distributions between two spin pairs were measured at various time points, one pair located on either end of the second transmembrane helix (helix 3), the other one located near the luminal ends of the intertwined transmembrane helices 1 and 4. In the dodecyl sulfate-solubilized apoprotein, both distance distributions were consistent with a random-coil protein structure. A rapid freeze-quench experiment on the latter spin pair indicated that 1 s after initiating reconstitution the protein structure is virtually unchanged. Subsequently, both distance distributions monitored protein folding in the same time range in which the assembly of chlorophylls into the complex had been observed. The positioning of the spin pair spanning the hydrophobic core of LHCII clearly preceded the juxtaposition of the spin pair on the luminal side of the complex. This indicates that superhelix formation of helices 1 and 4 is a late step in LHCII assembly.  相似文献   

12.
Biological activity and interference with insulin receptor complex fate of two modified sequences of insulin B21-B26, beta-Ala-Arg-Gly-Phe-Phe-Tyr-NH2 (DP-432) and beta-Ala-Arg-Pro-Phe-Phe-Tyr-NH2 (DP-640), were studied in cultured 18-day-old fetal rat hepatocytes known to respond to insulin by an acute stimulation of glycogenesis. The two derivatives stimulated [14C]glucose incorporation into glycogen in the absence of insulin independently of the deprivation of serum in the medium. The maximal effect of 3 mM DP-640 after 2 h, more pronounced than with 3 mM DP-432, was of the same order as that obtained with 10 nM insulin alone (stimulation index: 4.7 +/- 0.7, 2.5 +/- 0.2 and 3.6 +/- 0.9, n = 4, with DP-640, DP-432 and insulin, respectively) whereas insulin B-chain decreased glycogen labeling. Simultaneous addition of derivatives and insulin at maximal concentrations produced nearly additive effects. DP-640, as well as DP-432, increased the amount of [125I](A14) or (B26) human insulin associated with cells at 37 degrees C and inhibited intracellular insulin degradation with differences depending on the kind of insulin isomer and derivative, while the rapid insulin receptor cycle was not affected. Thus, the two derivatives specifically modified the cellular processing of insulin in cultured fetal hepatocytes, and exerted an insulin-like effect on glycogenesis clearly enhanced through modification of DP-432 by substitution of glycine for proline (DP-640).  相似文献   

13.
Electrostatic couplings between chromophores in photosynthetic pigment–protein complexes, and interactions of pigments with the surrounding protein environment, produce a complicated energy landscape of delocalized excited states. The resultant electronic structure absorbs light and gives rise to energy transfer steps that direct the excitation toward a site of charge separation with near unity quantum efficiency. Knowledge of the transition energies of the uncoupled chromophores is required to describe how the wave functions of the individual pigments combine to form this manifold of delocalized excited states that effectively harvests light energy. In an investigation of the major light-harvesting complex of photosystem II (LHCII), we develop a method based on polarized 2D electronic spectroscopy to experimentally access the energies of the S0–S1 transitions in the chromophore site basis. Rotating the linear polarization of the incident laser pulses reveals previously hidden off-diagonal features. We exploit the polarization dependence of energy transfer peaks to find the angles between the excited state transition dipole moments. We show that these angles provide a spectroscopic method to directly inform on the relationship between the delocalized excitons and the individual chlorophylls through the site energies of the uncoupled chromophores.  相似文献   

14.
State transition in photosynthesis is a short-term balancing mechanism of energy distribution between photosystem I (PSI) and photosystem II (PSII). When PSII is preferentially excited (state 2), a pool of mobile light-harvesting complex II (LHCII) antenna proteins is thought to migrate from PSII to PSI, but biochemical evidence for a physical association between LHCII proteins and PSI in state 2 is weak. Here, using the green alga Chlamydomonas reinhardtii, which has a high capacity for state transitions, we report the isolation of PSI-light-harvesting complex I (LHCI) super-complexes from cells locked into state 1 and state 2. We solubilized the thylakoid membranes with a mild detergent, separated the proteins by sucrose density gradient centrifugation, and subjected gradient fractions to gel-filtration chromatography. Three LHCII polypeptides were associated with a PSI-LHCI supercomplex only in state 2; we identified them as two minor monomeric LHCII proteins (CP26 and CP29) and one previously unreported major LHCII protein type II, or LhcbM5. These three LHCII proteins, in addition to the major trimeric LHCII proteins, were phosphorylated upon transition to state 2. The corresponding phylogenetic tree indicates that among the LHCII proteins associated with PSII, these three LHCII proteins are the most similar to the LHC proteins for PSI (LHCI). Our results are important because CP26, CP29, and LhcbM5, which have been viewed as belonging solely to the PSII complex, are now postulated to shuttle between PSI and PSII during state transitions, thereby acting as docking sites for the trimeric LHCII proteins in both PSI and PSII.  相似文献   

15.
Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.  相似文献   

16.
Light induces phosphorylation of photosystem II (PSII) proteins in chloroplasts by activating the protein kinase(s) via reduction of plastoquinone and the cytochrome b(6)f complex. The recent finding of high-light-induced inactivation of the phosphorylation of chlorophyll a/b-binding proteins (LHCII) of the PSII antenna in floated leaf discs, but not in vitro, disclosed a second regulatory mechanism for LHCII phosphorylation. Here we show that this regulation of LHCII phosphorylation is likely to be mediated by the chloroplast ferredoxin-thioredoxin system. We present a cooperative model for the function of the two regulation mechanisms that determine the phosphorylation level of the LHCII proteins in vivo, based on the following results: (i) Chloroplast thioredoxins f and m efficiently inhibit LHCII phosphorylation. (ii) A disulfide bond in the LHCII kinase, rather than in its substrate, may be a target component regulated by thioredoxin. (iii) The target disulfide bond in inactive LHCII kinase from dark-adapted leaves is exposed and easily reduced by external thiol mediators, whereas in the activated LHCII kinase the regulatory disulfide bond is hidden. This finding suggests that the activation of the kinase induces a conformational change in the enzyme. The active state of LHCII kinase prevails in chloroplasts under low-light conditions, inducing maximal phosphorylation of LHCII proteins in vivo. (iv) Upon high-light illumination of leaves, the target disulfide bond becomes exposed and thus is made available for reduction by thioredoxin, resulting in a stable inactivation of LHCII kinase.  相似文献   

17.
Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.  相似文献   

18.
Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH(2) and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.  相似文献   

19.
The diagnostic value of phonomechanography in valvular aortic stenosis was reassessed with a rarely used index, the ratio S1-maximum intensity of the systolic murmur/S1-S2, or Thiron's index, the author of which only studied the correlations with the aortic transvalvular pressure gradient. The results obtained by the author being considered inconclusive, we decided to examine its correlations with aortic valve surface area calculated with the Gorlin's formula. The study was carried out in 38 patients with pure aortic stenosis, in whom 4 phonomechanographic parameters, the corrected left ventricular ejection time (Meiners), the carotid pulse half peak time, the S1-maximum intensity of the murmur interval and Thiron's index, were compared with the transvalvular pressure gradient and the aortic valve surface area at catheterisation. The first two parameters mentioned above were of limited value (correlations with aortic valve surface area r = 0.315, p less than 0.05 and r = 0.477, p less than 0.01 respectively). On the other hand, a good correlation was obtained with Thiron's index (r = 0.624, p less than 0.001) which was better than that found with the interval between S1 and maximum intensity of the systolic murmur (r = 0.483, p less than 0.001) in a population not excluding subjects with cardiac failure. These results indicate that: when Thiron's index less than or equal to 0.45, the aortic stenosis is probably mild (aortic surface area greater than 0.8 cm2), when Thiron's index is 0.46 greater than 0.56, the aortic stenosis is likely to be moderately severe (aortic surface area 0.8 less than 0.5 cm2), when Thiron's index is greater than 0.57, the aortic stenosis is probably severe (aortic surface area less than 0.5 cm2). In our series, Thiron's index was the best phonomechanographic parameter for the assessment of pure aortic stenosis. It could not be calculated in 10 out of 48 patients; this drawback was not encountered with the corrected left ventricular ejection time or the carotid pulse half peak time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Degradation of the most abundant membrane protein on earth, the light-harvesting complex of Photosystem II (LHC II), is highly regulated under various environmental conditions, e.g., light stress, to prevent photochemical damage to the reaction center. We identified the LHC II degrading protease in Arabidopsis thaliana as a Zn(2+)-dependent metalloprotease, activated by the removal of unknown extrinsic factors, similar to the proteolytic activity directed against Lhcb3 in barley. By using a reversed genetic approach, the chloroplast-targeted protease FtsH6 was identified as being responsible for the degradation. T-DNA KO A. thaliana mutants, lacking ftsH6, were unable to degrade either Lhcb3 during dark-induced senescence or Lhcb1 and Lhcb3 during highlight acclimation. The A. thaliana ftsH6 gene has a clear orthologue in the genome of Populus trichocarpa. It is likely that FtsH6 is a general LHC II protease and that FtsH6-dependent LHC II proteolysis is a feature of all higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号