首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
视网膜退行性疾病是以视网膜神经元凋亡为主要病理过程的一类致盲性眼病,视网膜神经元受损后再生困难,Müller细胞是参与视网膜发育、受损及再生过程的重要胶质细胞。近年研究证明,Müller细胞是视网膜神经元的内源性替代来源,为视网膜神经再生的优秀靶标。本文根据视网膜神经再生过程、Müller细胞与视网膜神经再生相关因素进行综述,为神经再生研究提供新方向。  相似文献   

2.
Retinal glial (Müller) cells are proposed to mediate retinal potassium homeostasis predominantly by potassium transport through inwardly rectifying K(+) (Kir) channels. Retinal gliosis is often associated with a decrease in glial potassium conductance. To determine whether this decrease is caused by a downregulation of glial Kir channels, we investigated a rabbit model of proliferative vitreoretinopathy (PVR) which is known to be associated with proliferative gliosis. The membrane conductance of control Müller cells is characterized by large Kir currents whereas Müller cells of PVR retinas displayed an almost total absence of Kir currents. In control tissues, Kir2.1 immunoreactivity is localized in the inner stem processes and endfeet of Müller cells whereas Kir4.1 immunoreactivity is largely confined to the Müller cell endfeet. In PVR retinas, there is a mislocation of Kir channel proteins, with Kir4.1 immunoreactivity detectable in Müller cell fibers throughout the whole retina, and a decrease of immunoreactivity in the cellular endfeet. Real-time PCR analysis revealed no alteration of the Kir4.1 mRNA levels in PVR retinas as compared to the controls but a slight decrease in Kir2.1 mRNA. Western blotting showed no difference in the Kir4.1 protein content between control and PVR retinas. The data suggest that proliferative gliosis in the retina is associated with a functional inactivation of glial Kir channels that is not caused by a downregulation of the channel proteins but is associated with their mislocation in the cell membrane.  相似文献   

3.
增生性玻璃体视网膜病变(proliferative vitreoretinopathy,PVR)是视网膜重建的非特异性组织修复过程中的一部分.它发生在视网膜脱离后,视网膜外层缺血,光感受器细胞逐渐死亡(主要是凋亡),神经元丢失并刺激胶质细胞(主要是Müller细胞)肥大,视网膜也开始重建及保护余下的神经元,但这一系列反应如果过度,胶质组织就会代替神经元,视网膜也会受到牵拉而缩短,发生早期的PVR改变.整个过程中,胶质细胞起始了PVR,之后视网膜色素上皮细胞发生去分化,转化为巨噬细胞或成纤维细胞样形态,之后细胞或纤维膜发生收缩,阻止了视网膜的复位,PVR随之发生.这个过程我们称之为早期视网膜内增生性玻璃体视网膜病变.  相似文献   

4.
PURPOSE. To characterize and compare the expression of neurotrophins (NTs) and their receptors within adult porcine retinal ganglion cells (RGCs) in vivo and in vitro. METHODS. The distribution of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and -4 (NT-4), and their high-affinity receptors TrkA, TrkB, TrkC and low-affinity receptor p75, was analyzed in adult porcine retinal sections by immunohistochemistry. In addition, adult porcine retinas were dissociated and cultured in four different conditions: control, semipure RGCs, supplemented with BDNF, or seeded on Müller glia feeder layers. Double immunostaining was performed with antibodies to NTs or their receptors combined with neurofilament antibody to identify RGCs in culture. RESULTS. In vivo, immunolabeling of NGF was very faint, BDNF was especially prominent in RGCs and inner nuclear layer cells, NT-3 stained widespread nuclei, and NT-4 was undetectable. TrkA immunoreactivity was visible in the nerve fiber layer, TrkB staining was within RGC bodies, TrkC was undetectable, and p75 was widely expressed across the retina, within the Müller glia. Expression of neurotrophins and their receptors was maintained in all four models of adult RGCs in vitro, showing that expression was not influenced by substrate or culture conditions. We observed prominent staining of TrkA within growth cones, and a clear expression of p75 within a subpopulation of RGCs in vitro. CONCLUSIONS. These findings demonstrate that the expression of NTs and their receptors within adult porcine RGCs is maintained in vitro, under conditions of limited interaction with neighboring neurons and deprived of afferent inputs and target tissue. TrkA may be involved in regeneration of nerve terminals.  相似文献   

5.
石瑜珍  过贵元 《国际眼科杂志》2011,11(11):1938-1940
Müller细胞是视网膜特化的胶质细胞,它贯穿于视网膜全层,与视网膜神经元、其它胶质细胞、视网膜血管等紧密联系。Müller细胞不但对视网膜正常发育起着决定性作用,而且能支持神经元活动、调节神经递质循环、维持细胞外环境平衡、调节视网膜血管通透性。视网膜Müller细胞代谢障碍将导致视功能丧失、神经元细胞死亡、视网膜水肿等。因此,Müller细胞对维持视网膜的正常生理功能起着重要作用。我们就近年来Müller细胞的研究进展作一综述。  相似文献   

6.
7.
8.
AIMS: The distribution of glutamate cycle related proteins (glutamine synthetase (GS) and GLAST) and anti-apoptotic proteins (Bcl-2 and Bcl-X) was investigated in Müller cells during early human retinal development, relative to the onset of expression of synaptophysin, a presynaptic vesicle protein. METHODS: Using frozen sections of human fetal eyes (13-22 weeks gestation) (n = 10), Bcl-2, Bcl-X, GS, GLAST, and synaptophysin immunoreactivities (IR) were imaged using fluorescence microscopy and plotted as a function of eccentricity from the incipient fovea. Frozen sections of adult human retina (n = 4) were immunolabelled with antibodies to Bcl-2 and Bcl-X. RESULTS: Müller cell immunoreactivity for GS, GLAST, and Bcl-2 was initially detected in the incipient fovea, and then at more peripheral locations with increasing age. Synaptophysin-IR appeared earlier than all other target proteins. Within the synaptophysin-IR region, mature (differentiated) Müller cells expressed both Bcl-2 and Bcl-X-IR from 13 weeks gestation, ahead of GS-IR and GLAST-IR that were first seen at 14 weeks gestation. Additionally, from as early as 13 weeks gestation, ganglion cells and immature neuronal progenitor cells across the entire retina expressed Bcl-2-IR and Bcl-X-IR, respectively. In adult retina, ganglion cells and some bipolar cells expressed Bcl-X but not Bcl-2. CONCLUSION: Müller cells express Bcl-2 and Bcl-X after synaptogenesis has commenced, but before the onset of GS and GLAST expression, suggesting a protective role for these proteins in Müller cells during the onset of glutamatergic transmission in early human retinal development.  相似文献   

9.
10.
PURPOSE: To test whether in an animal model of proliferative vitreoretinopathy (PVR) the Müller glial cells displayed an upregulation of purinergic P2 receptor-mediated responses. METHODS: PVR was induced by intravitreal injection of the proteolytic enzyme, dispase, in the eyes of adult rabbits. The developing PVR was examined ophthalmoscopically. After 3 weeks, small retinal pieces were wholemounted and used for calcium imaging, freshly dissociated Müller cells were subjected to calcium imaging, and patch-clamp recordings were made. The presence of P2 receptor-mediated Ca(2+) responses was determined both directly--that is, fluorometrically--and indirectly, by electrophysiological recording of Ca(2+)-activated K(+) currents. RESULTS: According to earlier observations in another model of retinal detachment and PVR, the reactive Müller cells displayed hypertrophy, downregulation of inwardly rectifying K(+) currents, and depolarization of the resting membrane potential, all dependent on the severity of the PVR. Further, significant PVR-induced increase was observed in the number of Müller cells responding to adenosine 5'-triphosphate (ATP), with a transient elevation of their [Ca(2+)](i). If isolated Müller cells were exposed to ATP, 13% of the control cells, but 29% (moderate PVR) or 53% (massive PVR) of the reactive cells, showed fluorometric Ca(2+) increases. An increase of Ca(2+)-activated K(+) currents was measured in 11% of the control cells, but in 83% (moderate PVR) and 90% (massive PVR) of the reactive cells. Confocal images of retinal wholemounts revealed similar results. Because similar responses were elicited by uridine triphosphate (UTP), the dominant involvement of metabotropic (P2Y type) purinergic receptors is suggested. CONCLUSIONS: An upregulation of purinergic receptors is part of the reactive changes of Müller cells during PVR. It is suggested that ATP-evoked Ca(2+) responses may support the proliferation of Müller cells during PVR.  相似文献   

11.
Experimental proliferative vitreoretinopathy (PVR) was induced in the rabbit eye by injecting mitotically active Müller cells into the vitreal chamber. Two weeks after the initiation of PVR, the retina and the epiretinal membrane that formed were examined to ascertain the antigenic expression of Müller cells in the retina and in the epiretinal membrane. Examination of various regions of the retina from the experimental PVR eye demonstrated that vimentin, glial fibrillary acidic protein (GFAP), cellular retinaldehyde binding protein (CRALBP), and beta-amyloid precursor protein (beta-APP), which were present in the Müller cells of the retina from the control eye, increased their expression, while the antigenicity of glutamine synthetase (GS), did not change; these proteins were also present in the cells contained within the experimentally induced epiretinal membrane. Alpha smooth muscle actin (alpha-SMA), a cytoskeletal protein that is associated with migration and tractional forces in many cell types, was not only present in the cells embedded within the epiretinal membrane, but was also present in the Müller cells underlying the epiretinal membrane. However, Müller cells that were in the inferior portion of the retina, where epiretinal membrane pathology was absent, did not express alpha-SMA. Although this protein is not normally found in Müller cells, they do express it de novo when they are maintained in culture. This suggests that a localized mechanism associated with epiretinal membrane formation induces the expression of alpha-SMA in Müller cells while the increased expression of GFAP, beta-APP, vimentin, and CRALBP are probably regulated via a more general mechanism.  相似文献   

12.
D-serine, an endogenous co-agonist of NMDA receptors in vertebrate retina, may modulate glutamate sensitivity of retinal neurons. This study determined at the functional and molecular level the transport process responsible for D-serine in retinal Müller cells. RT-PCR and immunoblotting showed that serine racemase (SR), the synthesizing enzyme for D-serine, is expressed in the rMC-1 Müller cell line and primary cultures of mouse Müller cells (1 degrees MCs). The relative contributions of different amino acid transport systems to d-serine uptake were determined based on differential substrate specificities and ion dependencies. D-serine uptake was obligatorily dependent on Na+, eliminating Na+-independent transporters (asc-1 and system L) for D-serine in Müller cells. The Na+:substrate stoichiometry for the transport process was 1:1. D-serine transport was inhibited by alanine, serine, cysteine, glutamine, and asparagine, but not anionic amino acids or cationic amino acids, suggesting that D-serine transport in Müller cells occurs via ASCT2 rather than ASCT1 or ATB0,+. The expression of mRNAs specific for ASCT1, ASCT2, and ATB0,+ was analyzed by RT-PCR confirming the expression of ASCT2 (and ASCT1) mRNA, but not ATB0,+, in Müller cells. Immunoblotting detected ASCT2 in neural retina and in 1 degrees MCs; immunohistochemistry confirmed these data in retinal sections and in cultures of 1 degrees MCs. The efflux of D-serine via ASCT2 by ASCT2 substrates was demonstrable using the Xenopus laevis oocyte heterologous expression system. These data provide the first molecular evidence for SR and ASCT2 expression in a Müller cell line and in 1 degrees MCs and suggest that D-serine, synthesized in Müller cells by SR, is effluxed via ASCT2 to regulate NMDA receptors in adjacent neurons.  相似文献   

13.
Teleost fish regenerate retinal cells from a population of inner nuclear layer (INL) stem cells. To characterize photoreceptor regeneration in zebrafish (Danio rerio), adult albino fish were subjected to constant intense light to cause photoreceptor cell death. Retinal morphometry was performed on histological sections of control and light-lesioned albino retinas to compare the extent of light damage in the ventral, central and dorsal retinal regions. In addition, opsin immunohistochemistry and TUNEL were used to compare photoreceptor cell death in these different retinal areas, while PCNA immunolabeling quantified the cell proliferation that precedes the photoreceptor regeneration. Transgenic albino; Tg(alpha1-tubulin:egfp) zebrafish were also exposed to the intense light in order to examine regeneration-related gene expression changes. The light-lesioned retinas are characterized by extensive rod and cone photoreceptor cell death in the central and dorsal regions. In contrast, many of the rods and cones survive in the ventral retina. The highest levels of INL cell proliferation, which occurs subsequent to photoreceptor death, correspond to the retinal regions that suffer the greatest levels of photoreceptor damage. In the ventral retina, where photoreceptor cell death is minimal, cell proliferation is confined to the ONL. In addition, EGFP expression from the alpha1-tubulin promoter is increased in Müller glial cells in the light-damaged central and dorsal retina, while transgene expression in the ventral retina is restricted to small, round INL cells. Furthermore, expression of the HuC/D neuronal antigen is detected in a subpopulation of the Müller cells in the light-damaged superior retinal region. These data demonstrate that adult albino zebrafish display retinal regional differences in photoreceptor cell death and in the regeneration-related INL cell proliferation response. The high levels of INL cell proliferation and alpha1-tubulin:egfp transgene expression in the Müller cells may be graded in response to the degree of photoreceptor cell death. This suggests that the levels of photoreceptor damage may directly influence cell responses in the underlying retinal layers.  相似文献   

14.
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.  相似文献   

15.
Nitric oxide synthase expression in ischemic rat retinas   总被引:9,自引:0,他引:9  
PURPOSE: To investigate the expression of nitric oxide synthase (NOS) in the ischemic retina. METHODS: Retinal ischemia was induced in rats by bilateral common carotid artery occlusion (BCCAO) for various lengths of time. Using the retina after BCCAO, expression of neuronal NOS (nNOS) and inducible NOS (iNOS) and identification of their positive cells were studied by histological and immunohistochemical examinations. RESULTS: Histological examinations revealed significant reduction in the thickness of the inner plexiform layer and the outer plexiform layer of the retina. Expression of nNOS was detected in retinal ganglion cells, amacrine cells, and Müller cells after BCCAO. The expression of nNOS and iNOS detected in Müller cells became stronger and persisted long after BCCAO. CONCLUSIONS: In the ischemic retina, Müller cells and retinal ganglion cells expressed nNOS and iNOS. These phenomena may be involved in the ischemic damage to the retina.  相似文献   

16.
Glial reactivity, an early feature of diabetic retinopathy   总被引:43,自引:0,他引:43  
PURPOSE: To characterize early structural gliotic reactions in retinal Müller cells, astrocytes, and microglia in experimentally induced diabetes. METHODS: Rats were rendered diabetic by streptozotocin injection and killed after 2, 4, 12, or 20 weeks. Cell densities were determined in flatmounted retinas or transverse semithin sections. Expression of glial fibrillary acidic protein (GFAP) was localized on frozen sections or flatmounts by immunofluorescence and confocal microscopy, and GFAP content was evaluated by Western blot analysis. Microglial cells were visualized by binding of isolectin B4 or staining with antibodies to phosphotyrosine residues. The integrity of the blood-retinal barrier was assessed by intravenous injection of Evans blue. RESULTS: The density of Müller cells and microglia was significantly increased at 4 weeks of diabetes compared with nondiabetic controls. GFAP expression in Müller cells was not detected at 4 weeks but was prominent at 12 weeks. The number of astrocytes was significantly reduced at 4 weeks in the peripapillary and far peripheral retina. Shape changes of microglial cells indicated functional activation. Leakage of the blood-retinal barrier was observed at 2 weeks of hyperglycemia, the earliest time point investigated. CONCLUSIONS: The leakage of the blood-retinal barrier before glial reactivity suggests that glia are early targets of vascular hyperpermeability. The individual glial cell types react differentially to the diabetic state. Müller cells undergo hyperplasia preceding GFAP expression, and microglial cells are activated, whereas astrocytes regress. This glial behavior may contribute decisively to the onset and development of neuropathy in the diabetic retina.  相似文献   

17.
Choroidal blood flow in pigeons is regulated by the medial part of the nucleus of Edinger-Westphal (EW) via the ipsilateral ciliary ganglion. Interruption of this circuit by unilateral lesions of EW results in pathological modifications in the morphology of retinal photoreceptors in the ipsilateral eye in pigeons housed under 12hr light (400 lux)/12hr dark conditions. In the present study, we examined the effects of unilateral EW lesions on glial fibrillary acidic protein (GFAP) expression by retinal Müller cells in pigeons housed under the same lighting conditions. Since Müller cells in the retina of land vertebrates express increased GFAP during conditions of retinal pathology or stress (e.g. inflammation or hypoxia), this study would enable us to further evaluate the effects of disruption in the neural regulation of choroidal blood flow on the retina. We found that following EW lesions, retinal Müller cells expressed GFAP, with the precise intracellular location of the GFAP dependent on the amount of time elapsed following the lesion. One week after the EW lesions, GFAP labelling was restricted to the Müller cell endfeet in the nerve fiber layer and ganglion cell layer. By two-three weeks, the labelling had extended outward (or sclerad) into the portions of the Müller cells spanning the inner plexiform layer. Finally, by six weeks post-lesion, the entire extent of the Müller cell from the nerve fiber layer to the outer limiting membrane contained GFAP. No GFAP immunoreactivity in Müller cells was observed in the eyes contralateral to the EW lesions or in eyes in which the pupil had been fixed and dilated by lesions of the pretectal region. Our results suggest that the retina is in a state of physiological stress following interruption of the neural regulation of choroidal blood flow by EW lesions. Although the precise mechanisms by which altered choroidal blood flow regulation affects Müller cell GFAP production require elucidation, the results nonetheless highlight the importance of intact neural regulation of choroidal blood flow for retinal health.  相似文献   

18.
The presence of carbonic anhydrase (CA) activity in the neural retina has been known for several decades. CA-II, a soluble cytoplasmic isoform expressed by Müller cells and a subset of amacrine cells, was thought to be the sole source of CA activity in the neural retina. However, CA-II deficient mice retain CA activity in the neural retina, which implies that another isoform must be present in that tissue. Recently CA-XIV, an integral membrane protein, was cloned and characterized. We, therefore, sought to determine whether CA-XIV is expressed in the neural retina, and hence is responsible for the CA activity observed in CA-II null animals. Immunohistochemical analyses of histological sections from CA-II null, CA-XIV null, and control mice were performed to localize the CA-XIV isoform, as well as other known retinal markers. Immunoblotting and real-time RT-PCR analyses were also performed to test for CA-XIV expression in retina and other mouse tissues. We determined herein that CA-XIV, a approximately 45kDa membrane protein, is expressed in retina, as it is in kidney. In the retina, CA-XIV is expressed on the plasma membrane of Müller cells. CA-XIV is also found on both the apical and basal membranes of the retinal pigmented epithelium. The data presented here indicate that like CA-II, CA-XIV is highly expressed in the neural retina and, like CA-II, more specifically by the Müller cells. The cellular compartmentalization of the two isoforms in the Müller cell-one cytoplasmic and the other on the plasma membrane-suggest that the two enzymes have specific and unique functions. Future studies will be necessary to assign functions to CA-II and CA-XIV in the mouse neural retina.  相似文献   

19.
During proliferative vitreoretinopathy (PVR) Müller glial cells show an up-regulation of their responsiveness to extracellular adenosine 5'-triphosphate (ATP). In the present study, we investigated if such a glial cell response is also a feature for other retinopathies besides PVR. To this aim, the proteolytic enzyme, dispase (0.1 U), was injected into the vitreous of rabbit eyes. After 3 weeks, a distinct retinopathy had developed which showed no signs of PVR. The retinopathy was characterized by strong alterations of the retinal vasculature in the medullary rays, by photoreceptor degeneration, retinal atrophy, and activation of microglial cells. Müller cells became reactive, as indicated by up-regulation of glial fibrillary acidic protein immunoreactivity and by hypertrophy involving subretinal fibrosis. Müller cell reactivity was also evidenced electrophysiologically by a down-regulation of their inwardly rectifying potassium currents and by an up-regulation of their responsiveness to extracellular ATP. Significantly more Müller cells from dispase-treated eyes showed ATP-evoked calcium (83%) and current responses (69%) when compared with cells from control eyes (13 and 9%, respectively). The results indicate that increased responsiveness to extracellular ATP may be a more general feature of Müller cell gliosis, and is also observed in retinopathies besides PVR.  相似文献   

20.
Purpose The purpose was to examine the expression of nestin, Ki-67, and cyclin D1 in Müller cells after laser injury in adult rat retina. Methods The right eyes of adult Brown Norway rats were treated with laser photocoagulation. The eyes were removed 3, 7, and 14 days after laser treatment. The retinas were investigated immunocytochemically by confocal microscopy. Agarose-embedded sections were immunostained with antibodies to nestin, vimentin, glial fibrillary acidic protein (GFAP), glutamate-aspartate transporter (GLAST), rhodopsin, Ki-67, and cyclin D1. Cell death was examined using terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay on agarose sections. Results Nestin expression was induced in Müller cells following laser injury. In addition, Ki-67 and cyclin D1 expression was found in the nuclei of Müller cells after the treatment. TUNEL assay demonstrated that Müller cells were not labeled; hence these cells were not apoptotic. Conclusions These results suggest that dedifferentiation and proliferation of Müller cells can be induced by laser injury in adult rat retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号