首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parabrachial nucleus and conditioned taste aversion   总被引:6,自引:0,他引:6  
The parabrachial nucleus (PBN) surrounds the brachium conjunctivum in the dorsolateral pons. Although composed of numerous subnuclei, the PBN is typically organized into medial and lateral subdivisions according to their location relative to the brachium. In rodents, the medial PBN is part of the central gustatory system, whereas the lateral PBN is a component of the visceral sensory system. Lesions of the PBN disrupt conditioned taste aversion, a critically important learning mechanism that prevents the repeated ingestion of toxic food. Relevant neurobehavioral literature is reviewed to elucidate the role of the PBN in taste aversion learning.  相似文献   

2.
The two major components of the pontine parabrachial nucleus (PBN), the medial (gustatory) and lateral (visceral) subdivisions, have been implicated in a variety of ingestive behaviors. The present study examined the influence of bilateral ibotenic acid lesions of the medial or lateral PBN on the anorectic effects of two systemically administered drug treatments. In Experiment 1, 24-h food-deprived rats where injected with sulfated cholecystokinin (26-33) (CCK; 0, 4.0, or 8.0 microg/kg) and then given 60 min access to food. In Experiment 2, the influence of D-fenfluramine (DFEN; 0, 0.5, 1.0, or 2.0 mg/kg) on deprivation-induced feeding was examined in the same rats using the same behavioral procedure as in Experiment 1. Lesions of the lateral PBN abolished CCK-, but not DFEN-induced anorexia whereas lesions of the medial PBN augmented DFEN-, but had no influence on CCK-induced anorexia. The results suggest that the satiating effects of CCK and DFEN are mediated through different mechanisms involving, respectively, visceral and orosensory processing.  相似文献   

3.
The two major components of the pontine parabrachial nucleus (PBN), the medial (gustatory) and lateral (visceral) subdivisions, have been implicated in a variety of ingestive behaviors. The present study examined the influence of bilateral ibotenic acid lesions of the medial or lateral PBN on the anorectic effects of two systemically administered drug treatments. In Experiment 1, 24-h food-deprived rats where injected with sulfated cholecystokinin26-33 (CCK; 0, 4.0, or 8.0 μg/kg) and then given 60 min access to food. In Experiment 2, the influence of -fenfluramine (DFEN; 0, 0.5, 1.0, or 2.0 mg/kg) on deprivation-induced feeding was examined in the same rats using the same behavioral procedure as in Experiment 1. Lesions of the lateral PBN abolished CCK-, but not DFEN-induced anorexia whereas lesions of the medial PBN augmented DFEN-, but had no influence on CCK-induced anorexia. The results suggest that the satiating effects of CCK and DFEN are mediated through different mechanisms involving, respectively, visceral and orosensory processing.  相似文献   

4.
The present study investigated the hypothesis that the conditioned taste aversion (CTA) deficit consequent to lesions of the lateral parabrachial nucleus (LPBN) may be due to a disruption of neophobia. In Experiment 1, subjects were tested with one of three taste stimuli (alanine, saccharin, or quinine) and two nontaste stimuli (capsaicin and almond odor). Ibotenic acid lesions of the LPBN eliminated neophobia to alanine and saccharin but had no influence on the neophobic response to quinine, capsaicin, or almond odor. In Experiment 2, all the LPBN-lesioned (LPBNX) rats failed to develop a CTA. These results do not support the experimental hypothesis. Not only was the lesion-induced disruption of neophobia restricted to taste stimuli, the deficit was selective within that category. It is already known that LPBNX rats are unable to acquire conditioned aversions to capsaicin as well as alanine. Thus, the absence of a conditioned ingestional aversion in LPBNX rats is not predicated upon the absence of a neophobic response to the target stimulus. The present results, although exposing a stimulus selective disruption of neophobia, suggest that this deficit is independent of, rather than responsible for, the absence of conditioned ingestional aversions in rats with LPBN lesions.  相似文献   

5.
Increases in Fos-like immunoreactivity (FLI) in the intermediate division of the nucleus of the solitary tract (iNTS) are seen following the expression of a conditioned taste aversion (CTA). In studies limited to behavioral assessment, the pontine parabrachial nucleus (PBN) has been demonstrated to play a critical role in the acquisition, but not the expression, of CTAs. To better define the role of the PBN in taste aversion learning, the present study examined the effects of PBN lesions on FLI in iNTS in animals with lesions placed either before or after CTA training. As is the case with behavioral expression of a CTA, timing of PBN lesions was found to be critical. Lesions placed prior to conditioning blocked evidence of conditioning, including both taste rejection and FLI in iNTS. Lesions placed after conditioning, but before testing, did not interfere with either taste rejection or FLI. These results support and extend prior claims that PBN is critical for CTA acquisition but not expression. They also demonstrate that input from PBN to iNTS is not necessary for the FLI seen there during CTA expression.  相似文献   

6.
Association of the short-term memory of the gustatory conditioned stimulus (CS) with visceral malaise (unconditioned stimulus, US) in conditioned taste aversion (CTA) paradigm takes place in the parabrachial nuclei (PBN) of brainstem. In order to ascertain the role of protein-kinase C (PKC) during different phases of CTA acquisition and retrieval, four experimental series were carried out. In Experiment 1, 1 μl of 10 mM of PKC inhibitor chelerythrine prevented CTA acquisition when applied into PBN in the CS-US interval. In Experiment 2, the necessity of PKC activity in different phases of CTA acquisition was tested by prolonging the time interval between PBN administration of chelerythrine and i.p. LiCl. CTA acquisition was prevented when chelerythrine-induced blockade of PKC coincided with GSTM persistence but not with CTA consolidation. In Experiment 3, the interval between saccharin drinking and LiCl injection was prolonged to 120 min. Again, chelerythrine blockade of PKC activity prevented CTA formation when it interfered with GSTM persistence. In Experiment 4, the possibility that PKC activity is necessary also for CTA retrieval was tested by chelerythrine application into PBN 5 min before retrieval testing. In this case, the chelerythrine-induced PKC blockade did not impair CTA retrieval. It is concluded that PKC is important for GSTM formation and persistence but not for CTA consolidation or retrieval.  相似文献   

7.
Aversive and safe taste memory processing is dramatically disrupted by bilateral lesions of the pontine parabrachial nucleus (PBN). To determine how such lesions affect patterns of neuronal activation in forebrain, lesions were combined with assessment of cFos-like immunoreactivity (FLI) in insular cortex (IC) and amygdala after conditioned taste aversion (CTA) training. Increases in FLI in amygdala and IC, which are normally seen following novel (versus familiar) CS-US pairing, were eliminated after PBN lesions. This suggests that PBN lesions prevent transmission of critical CS and US information to forebrain regions for the processing of both aversive and safe taste memories. Unilateral asymmetrical lesions of PBN and IC blocked CTA acquisition as well as normal patterns of FLI in amygdala after novel CS-US pairing, an effect not seen when unilateral lesions were confined to a single hemisphere. The crossed-disconnection experiments provide compelling evidence that functional interactions between PBN and IC are required for CTA acquisition, but not for safe taste memory formation and retrieval. The dissociation between effects of the different types of lesions on safe and aversive taste memories supports emerging evidence that the neural underpinnings of the two types of taste learning differ.  相似文献   

8.
Trifunovic R  Reilly S 《Brain research》2006,1067(1):170-176
We previously reported that lesions of the medial parabrachial nucleus (PBN) enhanced d-fenfluramine (DFEN)-induced anorexia; a finding that suggests these lesions may potentiate the release of serotonin (5HT) or increase the postsynaptic action of 5HT. In the present study, we used SB 206553 (a 5HT2B/2C receptor antagonist) or m-CPP (a 5HT2C/1B receptor agonist) in a standard behavioral procedure (deprivation-induced feeding) to further explore the role of the medial PBN in drug-induced anorexia. In Experiment 1, DFEN (0 or 1.0 mg/kg) was given alone or in combination with SB 206553 (2.0 or 5.0 mg/kg). In Experiment 2, we investigated the food-suppressive effects of m-CPP (0.5, 1.0 or 2.0 mg/kg). The results of Experiment 1 show that SB 206553, while having no influence on the performance of control subjects, attenuated (2.0 mg/kg) or abolished (5 mg/kg) the potentiating effect of the lesions on DFEN-induced anorexia. In Experiment 2, m-CPP induced a suppression of food intake in nonlesioned animals that was significantly potentiated in rats with medial PBN lesions. These results are consistent with the hypothesis that medial PBN neurons mediate anorexia through 5HT2C receptors.  相似文献   

9.
A series of experiments examined the effects of hippocampal lesions on conditioned taste aversion (CTA) and pituitary-adrenal activity. Experiment 1 examined recovery from a conditioned taste aversion under conditions of free extinction. Hippocampal and unoperated rats recovered from the aversion at the same rate. Further, this experiment showed that the suppression in drinking in both groups produced by lithium chloride (LiCl) injection was a conditioned taste aversion (was dependent upon the contingent pairing of the taste stimulus with LiCl) and not enhanced neophobia. In Experiment 2 there were no behavioral effects of the lesion in a forced extinction CTA paradigm. In addition, hippocampal lesions failed to alter pituitary-adrenal responsiveness to LiCl. In the same experiment, pituitary-adrenal responsiveness of hippocampectomized rats, when re-exposed to the taste paired earlier with LiCl, was altered. Hippocampal lesions eliminated the elevation in corticosterone shown by unoperated control and neocortical-lesioned rats. The third experiment replicated this finding showing again that hippocampal-lesioned rats failed to show the forced extinction elevation in corticosterone when re-exposed to the aversive taste (Experiment 3). These data were integrated with other reports of behavioral and pituitary-adrenal alterations in hippocampal-lesioned rats.  相似文献   

10.
The distribution of evoked expression of the proto-oncogene c-fos was immunohistochemically examined in the rat brain after intraperitoneal injection of isotonic LiCl, which is commonly used to induce internal malaise in the conditioned taste aversion paradigm. C-fos-like immunoreactive neurones (c-fos neurones) were most densely observed in the central amygdaloid nucleus, external lateral subnucleus of the parabrachial nucleus (PBN), posteromedial and commissural parts of the nucleus of the tractus solitarius (NTS) and area postrema (AP). Experiments including vagotomy, intravenous injection of LiCl and lesions of the area postrema suggest that NTS neurones are activated via both sides of the vagus nerves, while AP neurones, humorally as well as neurally via the vagal nerve with a right side predominance. The activated NTS and AP neurones project mainly to the external lateral subnucleus of the PBN and lightly to the central lateral subnucleus of the PBN. These results are discussed in terms of the role of LiCl in the formation of conditioned taste aversion.  相似文献   

11.
The influence of bilateral excitotoxic lesions of the gustatory thalamus on latent inhibition and blocking of conditioned taste aversion (CTA) was examined in two experiments. In Experiment 1, rats with thalamic lesions showed normal latent inhibition by acquiring a CTA that was significantly weaker when the conditioned stimulus (CS) was familiar than when it was novel. In Experiment 2, the preconditioned element (sodium chloride) of a compound CS blocked the acquisition of a CTA to the novel element (sucrose) in normal rats. Irrespective of whether sodium chloride was preconditioned or not, rats with thalamic lesions showed little or no aversion to sucrose following compound conditioning. Overall, the results provide no support for the experimental hypothesis that thalamic lesions disrupt decremental changes in the attentional processing of gustatory stimuli.  相似文献   

12.
Previous research involving tests of innate preferences and aversions shows that bilateral ibotenic acid lesions of the visceral neurons located in the lateral parabrachial nucleus of the pons selectively disrupt consumption of those gustatory stimuli whose intake is augmented or restricted by their postoral consequences. The present study examined the performance of the same experimental subjects in learned preference and aversion tasks. The lesioned rats failed to develop a conditioned taste aversion (Experiment 1), a conditioned flavor preference (Experiment 2), and a conditioned aversion to the oral trigeminal stimulus, capsaicin (Experiment 3). The pattern of results from both types of taste-guided behaviors (innate and learned) suggests that excitotoxic lesions of the lateral parabrachial nucleus diminish sensitivity to gastrointestinal feedback which, in the present experiments, precludes aversive and appetitive associative learning.  相似文献   

13.
Previous studies have shown that area postrema (AP) lesions cause deficits in conditioned taste aversion in the rat. They also lead to chronically lowered heart rate which can be reversed by the animals' increased appetite for and ingestion of hypertonic saline. Although not previously examined in conditioned taste aversion, changes in autonomic nervous system activity as reflected in heart rate may be an important aspect of conditioning. The present study investigated the effects of AP lesions on heart rate conditioned responses (CRs) and unconditioned responses (UCRs). Two groups of AP lesioned and sham-operated rats, one that did and one that did not drink saline solution to raise heart rate, were studied. Both LiCl and scopolamine, which have opposite effects on heart rate, were the unconditioned stimulus (UCS) agents in two separate studies. In intact rats, LiCl-mediated conditioned taste aversion was associated with decreased conditioned stimulus (CS) intake and decreased heart rate Both effects were blunted by AP lesions, although all rats displayed heart rate UCRs to LiCl. The AP rats that drank saline behaved like intact rats exhibiting both a conditioned taste aversion and conditioned heart rate responses to the CS. Although CS intake decreased, no heart rate CRs developed with scopolamine. Scopolamine-mediated conditioned taste aversion was attenuated in both saline and non-saline drinking AP-lesioned groups. Thus, when conditioned taste aversion was associated with heart rate CRs, the AP lesion-induced deficit was counteracted by saline ingestion. Conversely, when there were no heart rate CRs, conditioned taste aversion was disrupted by the lesion regardless of saline ingestion.  相似文献   

14.
The prefrontal cortex (PFC) has been reported to be essential in neural control of feeding. In the present study, we aimed to provide a complex characterization of behavioral consequences of PFC microlesions in CFY rats. Kainic acid (KA) was microiontophoretically applied into the mediodorsal division of PFC to damage intrinsic neurons, whereas in another group of rats, 6-hydroxydopamine (6-OHDA) was microiontophoretized into the same region to destroy catecholaminergic (CA) projection fiber terminals. Body weights, food and fluid intake of both lesioned and (sham-operated or intact) control animals were daily measured. Effects of intracellular dehydration and water deprivation were also studied. Open field activity, stereotyped behaviors, and orientation towards visual and somesthetic stimuli were pre- and postoperatively tested. To examine hypothesized consequences of mPFC microlesions on central taste information processing, the acquisition and retention of saccharine conditioned taste aversion (CTA) were studied. No major changes were recorded in body weights, food and water consumption. Dehydration or deprivation similarly increased water intake in all animals. Scores of open field activity and stereotyped behaviors in the 6-OHDA group were significantly higher than those of the other groups. As the main findings of the present studies, both KA and 6-OHDA lesioned rats displayed significant deficits in CTA acquisition and retention tests. These results suggest that the medial PFC has a substantial role in both the formation and the retrieval of CTA. Furthermore, the present findings also indicate the general significance of prefrontal CA mechanisms in the organization of goal-directed, adaptive behaviors.  相似文献   

15.
Deficits in both learning and memory after lesions of the cholinergic basal forebrain, in particular the nucleus basalis magnocellularis (NBM), have been widely reported. However, the participation of the cholinergic system in either acquisition or retrieval of memory process is still unclear. In this study, we tested the possibility that excitotoxic lesions of the NBM affect either acquisition or retrieval of two tasks. In the first experiment, animals were trained for two conditioned taste aversion tasks using different flavors, saccharine and saline. The acquisition of the first task was before NBM lesions (to test retrieval) and the acquisition of the second task was after the lesions (to test acquisition). Accordingly, in the first part of the second experiment, animals were trained in the Morris water maze (MWM), lesioned and finally tested. In the final part of this experiment, another set of animals was lesioned, then trained in the MWM and finally tested. All animals were able to retrieve conditioned taste aversion (CTA) and MWM when learned before NBM lesions; however, lesions disrupted the acquisition of CTA and MWM. The results suggest that the NBM and cholinergic system may play an important role in acquisition but not during retrieval of aversive memories.  相似文献   

16.
J Li  J Yan  K Chen  B Lu  Q Wang  W Yan  X Zhao 《Brain research bulletin》2012,89(1-2):8-15
Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl.  相似文献   

17.
The specific role of insular cortex in acquisition and expression of a conditioned taste aversion was assessed using two different conditioning methods, which vary mode of taste delivery. Involvement of insular cortex in the induction of c-Fos-immunoreactivity in the nucleus of the solitary tract, a cellular correlate of the behavioral expression of a conditioned taste aversion, was also assessed. Electrolytic lesions of insular cortex blocked behavioral expression of a conditioned taste aversion and this was evident not only when lesions were placed prior to conditioning, but also when they were made after conditioning but before testing. In contrast to the effects on behavior, lesions did not completely block the c-Fos-immunoreactivity which accompanies re-exposure to the aversive taste. In addition, the blocking of behavioral evidence of aversion conditioning by cortical lesions was seen both in animals trained under an intraoral acquisition procedure and those trained with bottle-conditioning. This contrasts with previous work with amygdala lesions which showed that amygdala was absolutely necessary for taste aversions conditioned with the intraoral method but not for those conditioned using bottle presentation of the taste. Overall, these findings imply that the details of the neural circuitry involved in taste aversion learning, including its anatomical distribution, complexity and degree of redundancy, vary with the type of conditioning method employed.  相似文献   

18.
Rats orient to and approach localizable visual cues paired with food delivery. Previous studies from this laboratory show that the acquisition and expression of these learned cue-directed responses depend on integrity of a system including the central nucleus of the amygdala (CeA), the substantia nigra pars compacta (SNc) and the dorsolateral striatum (DLS). Other investigators have suggested that cue-directed behaviors may also depend on interaction between CeA and the ventral striatum, perhaps via CeA projections to the ventral tegmental area (VTA). In Experiment 1, we examined the effects of unilateral lesions of CeA and/or VTA on rats' acquisition of conditioned responses to visual cues paired with food. Contrary to the results of previous studies that examined interactions of CeA with either SNc or DLS, rats with contralateral disconnection lesions of CeA and VTA were unimpaired in their acquisition of cue-directed responses. By contrast, rats with lesions of both structures in the same hemisphere failed to learn cue-directed responses, but were normal in their acquisition of conditioned responses directed to the food cup. In Experiment 2, we attempted to characterize the influence of VTA on CeA by examining FOS induction in CeA by a visual cue for food in rats with unilateral lesions of VTA. The results suggested an excitatory influence of VTA on CeA in the presence of food cues. Implications of these results for brain circuits involved in learned orienting and incentive motivation are discussed.  相似文献   

19.
Our previous anatomical and electrophysiological studies demonstrated that first-order hepatic and gustatory afferents project to separate regions of the solitary nucleus (NST) and no intra-NST interaction of these two sensory systems could be demonstrated. However, iontophoretic injections of horseradish peroxidase into physiologically identified zones of the NST revealed that both of these regions send overlapping projections to the immediately subjacent parvocellular reticular formation as well as the postero-medial parabrachial nucleus (PBN). The present electrophysiological studies demonstrate that an interstitial zone of neurons in the caudal, medial PBN, indeed, receive convergent input from second-order gustatory and vagal afferents. Co-activation of these PBN units by the simultaneous arrival of both input sources frequently resulted in an additive interaction of evoked activity. PBN units lateral and caudal to this zone responded to vagal stimulation only, while units in the anterior and extreme medial portion of the PBN only responded to gustatory stimulation. By virtue of the efferent projections of the PBN, one might speculate that the convergence of information at this locus may, eventually, play a role in directing long term feeding behavior patterns such as learned taste aversion as well as the more transient changes in taste preference with visceral loading.  相似文献   

20.
The effects of medial septal lesions on latent inhibition (LI) were assessed in a conditioned taste aversion paradigm. Animals were tested in a LI paradigm 2 weeks after receiving medial septal or sham lesions. The LI paradigm involved a pre-exposure phase in which water-deprived rats were allowed access to either water (non-pre-exposed; NPE) or 5% sucrose (pre-exposed; PE), followed by a conditioning phase in which animals were allowed access to sucrose and subsequently injected with lithium chloride, and a test phase in which animals were allowed access to both sucrose and water. LI was assessed by comparing the %-sucrose consumed in PE and NPE groups on the test day. There was a significantly greater LI effect in the lesion group than in the sham group, suggesting that electrolytic lesions to the medial septum can enhance LI in a CTA paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号