首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dephosphorylation processes of target proteins are critical to the reversible regulation of intracellular signal transduction systems. Further, brain damage such as ischemic insult induces marked changes in protein kinase activity. To study these changes more thoroughly, specific monoclonal antibodies of the A and B subunits of calcineurin (protein phosphatase 2B) were raised, and regional alterations in the immunoreactivity of calcineurin in the rat hippocampus were investigated after a transient forebrain ischemic insult causing selective and delayed hippocampal CA1 pyramidal cell damage. In normal rats it was found that both the calcineurin A and the B subunits showed high immunoreactivity in the dendritic fields of the hippocampal formation. The immunoreactivity of subunit A in the strata oriens, the radiatum of the CA1 subfield and in the stratum lucidum of the CA3 subfield was most intense, whereas the immunoreactivity in the other CA3 subfields and in the dentate gyrus was relatively low. In contrast, the dendritic fields of the hippocampal formation were equally immunoreactive to calcineurin subunit B, although the stratum lucidum of the CA3, where the mossy fibers from the dentate granule cells terminate, showed a very high immunoreactivity of the B subunit. After transient forebrain ischemia in the CA1 subfield, where selective pyramidal cell death occurred two days after this ischemia, a marked loss of immunoreactivity in both subunits was observed, along with morphological pyramidal cell damage. A recovery of the immunoreactivity of A and B subunits in the strata oriens and radiatum was later noted 30 days after ischemia. In the stratum lucidum of the CA3, the immunoreactivity of both the A and B subunits was transiently depressed from 6 to 24 h, followed by a marked immunoreactivity enhancement from four to 30 days after ischemia. Further, in the histologically intact dentate gyrus, both the immunoreactivity of the A and B subunits in the molecular layer were transiently enhanced from four to 14 days after ischemia, particularly in the supragranular layer. The results clearly indicate that the protein dephosphorylation systems were markedly altered in the whole hippocampal formation during the recirculation period following ischemia. Further, the transient depression in the calcineurin immunoreactivity seen in the mossy fiber terminals may reflect modulated synaptic activity of the dentate granule cells, which may play a pivotal role in the delayed and selective death of the CA1 pyramidal cells. Thus, calcineurin appears to be an excellent marker enzyme for the detection of neuronal activity and synaptic plasticity after brain damage, such as an ischemic insult.  相似文献   

2.
H Onodera  H Aoki  T Yae  K Kogure 《Neuroscience》1990,38(1):125-136
The hippocampus provides a suitable area in the brain for the analysis of neuronal plasticity after application of a selective lesioning technique. Using histochemistry and autoradiography, we studied synaptic reorganization in the rat hippocampus with selective CA1 pyramidal cell lesioning caused by transient forebrain ischemia after long-term survival. An autoradiographic study was performed on second messenger systems ([3H]inositol 1,4,5-trisphosphate, [3H]forskolin and [3H]phorbol 12,13-dibutyrate binding). One-hundred days after ischemia, depletion of CA1 pyramidal cells and marked shrinkage of the CA1 subfield was noted in spite of unaltered thickness of the CA3 band and of the dentate molecular layers. Although neuronal density in the CA3 region of animals killed seven days after ischemia was not different from the normal group, 78% of animals showed neuronal loss of 30-50% in the stratum pyramidale of the CA3b 100 days after recirculation. Sixty-seven per cent of animals exhibited supragranular mossy fiber sprouting in the dentate gyrus. However, CA3 neuronal loss did not correlate with mossy fiber sprouting. Succinic dehydrogenase was depleted in the CA1 100 days after ischemia, and animals with CA3 damage showed a reduction of succinic dehydrogenase activity in the CA3. In contrast to the unaltered acetylcholinesterase in the animals killed seven days after ischemia, high density bands of acetylcholinesterase activity in the stratum pyramidale of the CA1 were found to be broadened 100 days after ischemia. In the CA1 subfield, subnormal activity of [3H]phorbol 12,13-dibutyrate and [3H]forskolin binding were observed in spite of the depleted [3H]inositol 1,4,5-triphosphate binding. [3H]Forskolin binding in the hilus had increased by 62% 100 days after ischemia, although binding in the stratum lucidum of the CA3 and in the stratum moleculare of the dentate gyrus was unaltered. However, no visible supragranular increase in [3H]forskolin binding was observed. These results indicate that long-term survival after CA1 pyramidal cell depletion caused by transient forebrain ischemia induced the modulation of neuronal activity and synaptic rearrangements in the whole hippocampal formation.  相似文献   

3.
Choi JS  Kim HY  Chun MH  Chung JW  Lee MY 《Neuroscience letters》2006,393(2-3):231-236
We investigated the temporal changes and cellular localization of cyclooxygenase-2 (COX-2) in the rat hippocampus during the induction of acquired ischemic tolerance by sublethal ischemia, and compared these changes with those occurring following transient forebrain ischemia. Adult male Sprague Dawley rats were subjected to either 10 min of lethal global ischemia with or without 3 min of sublethal ischemic preconditioning, or 3 min of ischemia only. A short (3 min) cerebral ischemia as well as lethal ischemia with preconditioning substantially and significantly upregulated COX-2 expression in dentate granule cells, as confirmed by immunoblot analysis. This became evident by 4 h, peaked at 1-3 days, and returned to the basal level around 7 days. COX-2 expression was also increased in CA2 and CA3 neurons, although with weaker staining intensity, but in CA1 neurons very weak immunoreactivity was transiently observed. In the ischemic hippocampus, however, in agreement with previous reports, COX-2 expression was induced strongly in vulnerable CA1 and hilar neurons as well as in resistant CA3 and dentate granule cells. These data demonstrated that COX-2 expression is upregulated in neuronal subpopulations destined to survive, i.e., in CA3 and dentate granule cells after ischemia and ischemia-tolerance induction, as well as in ischemia-vulnerable neurons, i.e., in CA1 neurons after lethal ischemia, suggesting that hippocampal neuronal subpopulations have differential sensitivity to COX-2 upregulation.  相似文献   

4.
Hwang IK  Yoo KY  Kim DS  Eum WS  Park JK  Park J  Kwon OS  Kang TC  Choi SY  Won MH 《Neuroscience》2004,128(3):511-518
In the previous study, we observed chronological alterations of glutamic acid decarboxylase (GAD), which is the enzyme converting glutamate into GABA. GAD isoforms (GAD65 and GAD67) differ substantially in their interactions with cofactor pyridoxal 5'-phosphate, which is catalyzed by pyridoxal kinase (PLK). In the present study, we examined the chronological changes of PLK expression and activity in the hippocampus after 5 min transient forebrain ischemia in gerbils. PLK immunoreactivity in the sham-operated group was detected weakly in the hippocampus. Ischemia-related change of PLK immunoreactivity in the hippocampus was significant in the hippocampal cornu ammonis (CA1)region, not in the hippocampal CA2/3 region and dentate gyrus. PLK immunoreactivity was observed in non-pyramidal GABAergic neurons at 30 min to 3 h after ischemic insult. At 12 h after ischemic insult, PLK immunoreactivity was shown in many CA1 pyramidal cells as well as some non-pyramidal cells. At this time point, PLK immunoreactivity and protein content was highest after ischemia. Thereafter, PLK immunoreactivity and protein content is decreased time-dependently by 4 days after ischemic insult. Four days after ischemia, some astrocytes expressed PLK in the CA1 region. The specific PLK activity was not altered following ischemic insult up to 2 days after ischemic insult. Thereafter, the specific PLK activity decreased time-dependently. However, total activity of PLK was significantly increased 12-24 h after ischemic insult, and thereafter total activity of PLK decreased. Therefore, we suggest that the over-expression of PLK in the CA1 pyramidal cells at 12 h after ischemia may induce increase of GAD in the CA1 pyramidal cells, which plays an important role in delayed neuronal death via the increase of GABA or enhancement of GABA shunt pathway.  相似文献   

5.
Calbindin D(28K) (CB) expression was analyzed in the rat hippocampus following 10-min-cardiac arrest-induced ischemia within a year after reperfusion. In rats examined 3 days after ischemia, CB immunoreactivity disappeared completely from CA1 pyramidal neurons and from most CA2 pyramids. In the stratum granulosum of the dentate gyrus, mossy fibers, and hippocampal interneurons, CB immunoreactivity was preserved, although staining was somewhat paler than that in control rats. A similar pattern of CB immunoreactivity was found in rats sacrificed 14 days and 1 month after cardiac arrest. From the 14th postischemic day, neuronal loss in the stratum pyramidale of CA1 but not in that of CA2 became apparent. The reappearance of CB immunoreactivity in CA1 and CA2 pyramidal neurons was noticed 6 months after ischemia, and the pattern was identical to that observed in animals sacrificed 12 months after the ictus. The prolonged loss and delayed reappearance of CB immunoreactivity in the hippocampus demonstrate that ischemia may induce long-term disturbances of protein expression, which may in turn result in impairment of hippocampal functioning.  相似文献   

6.
Papp E  Rivera C  Kaila K  Freund TF 《Neuroscience》2008,154(2):677-689
Cation chloride cotransporters have been reported to be expressed in neurons in the hippocampus and to regulate intracellular Cl(-) concentration. The neuron-specific K-Cl cotransporter 2 (KCC2) is necessary for maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA. In this study we examined the vulnerability of KCC2-containing neurons as well as the changes in the pattern of KCC2 distribution in the rat hippocampus following 15 min ischemia induced by four-vessel occlusion. Immunostaining for the 72 kDa heat shock protein (HSP-72) was used to investigate the extent of damage in neuronal populations previously shown to be vulnerable to ischemia. At 6-24 h after ischemia, when the pyramidal cells in the CA1 (subfield of cornu Ammonis) region showed no morphological signs of damage, a small rise of KCC2 immunoreactivity was already observed. After 2 days, when the CA1 pyramidal cells started to degenerate, a progressive downregulation of the KCC2 protein was visible. Interestingly, in the same areas, the parvalbumin containing interneurons showed no signs of ischemic damage, and KCC2 immunoreactivity was retained on their membrane surface. In CA1 pyramidal cells, the reduction in KCC2 expression may lead to an elevation of intracellular Cl(-) concentration, which causes a shift in equilibrium potential toward more positive levels. Consequently, the reduction of the inhibitory action of GABA through downregulation of KCC2 function may be involved in the pathomechanisms of delayed neuronal death in the CA1 subfield.  相似文献   

7.
The calcium-binding proteins, parvalbumin (PV) and calbindin (CaBP), were used as immunocytochemical markers for two different interneuron populations in the rat hippocampus shortly after transient cerebral ischemia. Besides in interneurons, CaBP immunoreactivity (-i) is located in hippocampal CA1 pyramidal cells and dentate granule cells. Shortly after ischemia, the PV-i and CaBP-i were unchanged but, around the 4th postischemic day, PV-i disappeared from somata and fibers located in CA1, CA3c, and the dentate hilus. Terminal PV-i was unchanged. Within days, the PV-i gradually reappeared, first in somata and then in fibers. The transient loss of PV-i was, on a time scale, closely accompanied by a permanent loss of CaBP-i in CA1 pyramidal cells. CaBP-i in interneurons was unchanged. In order to examine the effect of an increased intracellular calcium concentration on the PV-i and CaBP-i, the calcium ionophore A23187 was stereotaxically injected into CA1. In rats killed 30 min later and processed for PV-i and CaBP-i, both PV-i and CaBP-i had disappeared around the A23187 injection sites. Based on this observation and the changes observed after ischemia, it is suggested that the hippocampal PV-i interneurons suffer from a delayed and reversible calcium accumulation in the days after ischemia. Concomitantly, there could be a decreased synthesis or increased destruction of PV after ischemia.  相似文献   

8.
Immunohistological and in situ hybridization techniques were used to study the influence of kainic acid-induced seizures and of pentylenetetrazol kindling on neurokinin B immunoreactivity and neurokinin B mRNA in the rat hippocampus. Pronounced increases in neurokinin B immunoreactivity were observed in the terminal field of mossy fibres 10-60 days after intraperitoneal injection of kainic acid. These slow but persistent increases in immunoreactivity were accompanied by markedly enhanced expression of neurokinin B mRNA in the granule cells and in hilar interneurons adjacent to the granule cell layer. These changes were preceded by transient increases in neurokinin B mRNA and immunoreactivity in CA1 pyramidal cell layer two and 10 days after kainic acid, which, however, subsided later on. Pentylenetetrazol kindling caused similar increases in neurokinin B mRNA expression in granule cells and in CA1 pyramidal cells, but not in hilar interneurons. In CA1, increased neurokinin B message was present two days after termination of the kindling procedure but not after 10 days. Sixty days after kainic acid injection, neurokinin B immunoreactivity extended to the inner-third of the molecular layer of the dentate gyrus. After pentylenetetrazol kindling, a neurokinin B-immunoreactive band was observed in the infrapyramidal region of CA3. Lesions of the dentate granule cells by local injection of colchicine in kainic acid-treated rats abolished the supragranular neurokinin B-positive staining, whereas it was almost unchanged after transection of the ventral hippocampal commissure. These observations suggest that neurokinin B immunoreactivity may be located in ipsilateral mossy fibres undergoing collateral sprouting to the inner molecular layer or to the infrapyramidal region in CA3, respectively. Preprotachykinin A mRNA, which encodes for neurokinin A and substance P, and substance P immunoreactivity were not changed in the hippocampus of epileptic rats compared with untreated animals. The observed changes in neurokinin B immunoreactivity and mRNA indicate that specific functional and morphological changes may be induced in hippocampal neurons by recurrent limbic seizures.  相似文献   

9.
Summary The distribution of neurofilament (NF) proteins was studied immunohistochemically in the gerbil hippocampus with antibodies against NF68 (68 Kd molecular weight) and NF200 proteins, and changes in the distribution of NF proteins after transient ischemia were observed in order to investigate the temporal correlation between NF and delayed neuronal death. In the normal hippocampus, NF68-like immunoreactivity (NF68-LI) was densely distributed in nerve processes in CA2, CA3 and the hilus of the dentate gyrus but was less intense in CA1. In contrast, processes with NF200-LI appeared to be evenly distributed in CA1, CA2, CA3 and the dentate gyrus. Mongolian gerbils were subjected to transient ischemia for 5 min by bilateral carotid occlusion and subjected to immunohistochemistry 1, 2, 3 and 4 days after ischemia. Following transient ischemia, prior to neuronal cell death, the intensity of both NF68-LI and NF200-LI decreased in the whole hippocampal formation. This decrease was more obvious in the case of NF68-LI than NF200-LI. Four days after ischemia, when neuronal death of CA1 pyramidal cells had occurred, processes in CA1, particularly 68 Kd components, showed marked decreases in number and staining intensity, although processes in most layers of CA2, CA3 and the dentate gyrus appeared to be stained similarly to normal brain. Since NF68 protein is considered to be the major component of NF proteins and NF200 is an associated accessory protein, the current observations suggest that the poor distribution of NF68 in CA1 and the early loss of NF proteins may be closely related to selective vulnerability of CA1 pyramidal cells and delayed neuronal death.  相似文献   

10.
H Hara  H Kato  T Araki  H Onodera  K Kogure 《Neuroscience》1991,42(1):159-169
We investigated, to examine the involvement of lipid peroxidation and inhibitory mechanisms, a novel lipid peroxidation inhibitor (KB-5666) and a GABAA receptor-effector (pentobarbital) on ischemic neuronal damage and the alterations in the second messenger and neurotransmitter systems in Mongolian gerbils by means of morphology and in vitro receptor autoradiography. Quantitative receptor autoradiography visualized binding sites for [3H]inositol 1,4,5-trisphosphate, [3H]forskolin, [3H]phorbol 12,13-dibutyrate, [3H]isradipine (PN200-110), [3H]N6-cyclohexyl-adenosine, and [3H]quinuclidinyl benzilate indicating binding sites for inositol 1,4,5-trisphosphate, forskolin, protein kinase C, L-type calcium channels (or dihydropyridine binding sites), adenosine A1, and muscarinic cholinergic receptors, respectively. In the morphological study, KB-5666, 10 and 50 mg/kg, i.v., 5 min before ischemia, protected against ischemic neuronal damage to the hippocampal CA1 subfield following 5 min of bilateral carotid artery occlusion in a dose-dependent manner. Pentobarbital, 30 mg/kg, i.v., 5 min before ischemia, also had a protective effect. In receptor autoradiographic studies, all receptor bindings decreased significantly in the CA1 subfield seven days after ischemia. In particular, [3H]inositol 1,4,5-trisphosphate binding in the CA1 subfield was completely lost after ischemia. [3H]Inositol 1,4,5-trisphosphate and [3H]forskolin binding decreased as early as 6 h after ischemia. In the CA3 subfield, [3H]inositol 1,4,5-trisphosphate, [3H]PN200-110, and [3H]N6-cyclohexyladenosine bindings decreased seven days after ischemia. In the dentate gyrus, [3H]inositol 1,4,5-trisphosphate binding decreased seven days after ischemia. KB-5666 and pentobarbital prevented reductions in these receptor bindings in the CA1 subfield at 6 h and seven days after ischemia. These results indicate that KB-5666 and pentobarbital protect the brain from both structural and functional damage after ischemia, and that lipid peroxidation and inhibitory mechanisms may play a pivotal role in the neuronal damage of the hippocampal CA1 subfield after ischemia.  相似文献   

11.
12.
13.
The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT3) and Neurotrophin-4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre-subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF-transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB-immunoreactive neurons in the granule cell layer of the dentate gyrus, pre-subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock-transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock-transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non-specific protection of TrkB-negative, but not TrkB-positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF-producing and non-BDNF-producing grafts. However, grafting of BDNF-producing fibroblasts two days before ischemia significantly and specifically prevented nerve cells from dying in the CA1 area of the ipsilateral hippocampus. Cell survival was associated with increased TrkB immunoreactivity as the majority of living cells were TrkB immunoreactive. Thus, our results show that BDNF is able to up-regulate the expression of TrkB in control and pathological states, and that BDNF prevention of neuronal death following transient forebrain ischemia is associated with increased expression of its specific receptor.  相似文献   

14.
脑缺血后大鼠海马一氧化氮合酶表达的变化   总被引:8,自引:2,他引:8  
用四血管闭塞法造成大鼠一过性全脑缺血。按不同时程,以还原型尼克酰胺腺嘌呤二核苷酸脱氨酶组织化学方法对再灌流期间海马不同亚区内一氧化氮合酶阳性细胞的数量变化进行了研究。结果发现:海马本部的一氧化氮合酶阳性细胞数量在再灌流2~6h即有增高,到12~24h进一步增加至对照水平的3倍左右;3d时已有所减少,7d时在CA1区恢复至对照组的水平。齿状回的一氧化氮合酶阳性细胞数量在再灌流2~6h已有明显的增高,约为对照水平的2倍.并在再灌流12h、24h和3d时保持在同一水平。此外,缺血后各亚区内染出的血管数量于再灌流2~6h即有明显增多,并在再灌流7d后仍明显高于对照组。本文结合文献对缺血性神经元坏死和一氧化氮合酶表达之间的关系进行了讨论。  相似文献   

15.
Summary This study examines the effect of the immunosuppressive drug Cyclosporin A (CyA) on the survival and differentiation of solid grafts of fetal (E16–17) mouse hippocampi transplanted to the brain of adult rats. The CyA was given as daily subcutaneous injections of 20 mg/kg from the day before transplantation with reduction of the dose to 15 mg/kg after 14 days. Five weeks after transplantation neuron containing xenografts were recovered in 11 out of 17 CyA-treated recipients (65%). After 8 weeks 9 out of 21 grafts were found (43%). In the control groups, treated only with the vehicle olive oil, 8 out of 14 xenografts were recovered after 5 weeks survival (36%) and only 3 out of 17 after 8 weeks (18%). All xenografts were infiltrated with mononuclear lymphocytic-like cells, but the infiltration was least extensive and least dense in the CyA treated animals. An observed correlation between this cellular infiltration and the gliosis in the xenografts suggested that CyA also directly or indirectly influenced the glial reaction. Most surviving xenografts were located next to the lateral ventricles or the choroid fissure. They were organotypically organized with identifyable cell and neuropil layers, and their connectional organization was similar to rat and mouse allografts grafted to adult recipients. In the absence of major extrinsic afferents the intrinsic pathways observed with Timm staining had reorganized according to known principles for aberrant growth and collateral sprouting. Ingrowth of extrinsic host afferents was only demonstrated for AChE positive host fibers. We conclude that CyA treatment of adult rat recipients can increase the survival of intracerebral fetal mouse hippocampal xenografts and reduce the histological signs of rejection. Xenografting combined with CyA treatment thereby permits the use of a wider spectrum of donor neurons for studies of neuronal interaction and repair.Abbreviations ca commissural-associational zone - CA1 hippocampal subfield CA1, regio superior - CA3 hippocampal subfield CA3, regio inferior - f fimbria - FD fascia dentata - g dentate granule cell layer - gl gliosis - H hilus fascia dentata, CA4 - HP hippocampus - Kg Kyoto rat granule cells - Kp Kyoto rat pyramidal cells - lpp lateral perforant path zone - m dentate molecular layer - mf mossy fiber layer - mpp medial perforant path zone - o stratum oriens - p hippocampal pyramidal cells - r stratum radiatum - R residual xenograft tissue - Sub subiculum - Th thalamus - TR xenotransplant - ve lateral ventricle  相似文献   

16.
The regional distribution of neurofilament proteins in the rat hippocampus and their early changes after kainic acid induced seizures were investigated immunocytochemically with antibodies against light weight neurofilament, phosphorylated and non-phosphorylated heavy weight neurofilament. The light weight and non-phosphorylated heavy weight neurofilaments were distributed more unevenly than the phosphorylated neurofilament. The perikarya and processes of pyramidal cells in the CA3 field contained the highest light weight and non-phosphorylated heavy weight neurofilaments, while the perikarya of granule cells contained only few light weight neurofilament and the perikarya of CAI pyramidal cells were even devoid of immunoreactivity of both light and heavy weight neurofilaments. The fiber staining of the light weight and non-phosphorylated heavy weight neurofilaments, especially the former, was less in the CAI field and molecular layer of dentate gyrus. The phosphorylated neurofilament immunoreactivity was identified only in axons. Mossy fibers, the axons of granule cells, contained the light weight and phosphorylated heavy weight neurofilaments, but not the non-phosphorylated neurofilament. Seven days after the kainic acid induced seizures, the phosphorylated neurofilament staining was greatly reduced in the CAI and inner molecular layer of the dentate gyrus, probably resulting from the axonal degeneration of the Schaffer collaterals and the commissural/associational fibers. Furthermore, the non-phosphorylated neurofilament appeared in the mossy fibers of the CA3 stratum lucidum, which normally do not express such immunoreactivity. The results indicate that the neurofilaments are altered following the neuronal degeneration and post lesional plasticity caused by the kainic acid administration. Therefore, the examination of various phosphorylated neurofilaments may offer a comprehensive understanding of major hippocampul pathways, axonal plasticity and the possible roles of neurofilaments in the hippocampus following excitotoxic insults.  相似文献   

17.
18.
We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ).  相似文献   

19.
Summary We examined the time course of basic fibroblast growth factor (bFGF) immunoreactivity and its mRNA level mainly in the hippocampus after transient forebrain ischemia using immunohistochemistry, enzyme immunoassay (EIA), Western blot analysis and in situ hybridization. Neuronal death in the hippocampal CA1 subfield was observed 72 h after 20 min of ischemia. The number of bFGF-immunoreactive(IR) cells increased 48 h–5 days after ischemia in all hippocampal regions. At 10 and 30 days, the bFGF-IR cells in the CA1 subfield had further increased in numbers and altered their morphology, enlarging and turning into typical reactive astrocytes with the advancing neuronal death in that area. In contrast, the number of bFGF-IR cells in other hippocampal regions had decreased 30 days after ischemia. The EIA study showed a drastic increase in bFGF levels in the hippocampus 48 h after ischemia (150% of that in normal rat) which was followed by further increases. In Western blot analysis, three immunoreactive bands whose molecular weights correspond to 18, 22 and 24 kDa were observed in normal rat and ischemia increased all their immunoreactivities. In the in situ hybridization study of the hippocampus, bFGF mRNA positive cells were observed in the CA1 subfield in which many bFGF-IR cells existed after ischemia. These data demonstrate that transient forebrain ischemia leads to an early and strong induction of bFGF synthesis in astrocytes, suggesting that the role of bFGF is related to the function of the reactive astrocytes which appear following brain injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号