首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the study was to determine whether memantine could slow down the changes seen in the rabbit and rat retina following ischemia/reperfusion. A "suction cup procedure," which raises the intraocular pressure, was used to give an ischemic insult to the rabbit retina. The electroretinogram was recorded before ischemia and after 2 days of reperfusion. Memantine or saline (10 microl) was injected into the eye before ischemia. Immunohistochemistry was used to study the effect of ischemia/reperfusion on the GABA, ChAT, and alphaPKC immunoreactivities. Ischemia/reperfusion injury to the rat retina was induced by raising the intraocular pressure above the systolic blood pressure for 60 min, followed by reperfusion of 3-14 days. Memantine (5 mg/kg) or saline was injected i.p. at the onset of ischemia or reperfusion. Immunohistochemistry was used to study the effect of ischemia/reperfusion on the ChAT, alphaPKC, and Thy-1 immunoreactivities. In addition, morphometric analysis was carried out to determine the effects of ischemia/reperfusion on the thickness of the retina. Ischemia for 75 min caused a change in the nature of the normal GABA and ChAT immunoreactivities in the rabbit retina and a reduction in the b-wave of the electroretinogram. When memantine was injected into the vitreous humour at the onset of an ischemic insult, the changes in the GABA and ChAT immunoreactivities were reduced and the recovery of the reduced b-wave of the electroretinogram after 2 days reperfusion was enhanced significantly. Ischemia for 60 min followed by 3 days reperfusion showed a clear change in ChAT immunoreactivity in the rat retina. The Thy-1 immunoreactivity was only clearly altered after a reperfusion period of 7 days. Moreover, a measurable change in the thickness of the inner retinal layers was detected after 14 days of reperfusion. When given at the onset of ischemia, memantine counteracted the effect of ischemia/reperfusion to varying degrees. However, when memantine was given at the onset of the reperfusion this was not the case. The combined data show that a single injection of memantine given i.p. or intravitreally will protect the retina from a subsequent ischemic insult.  相似文献   

2.
目的 观察家兔视网膜缺血 -再灌注后视网膜结构的动态变化。方法 通过前房灌注加压至 16 .7k Pa,维持 1h,建立缺血模型 ,观察再灌注 2~ 14d内其结构变化及内层视网膜平均厚度的变化。结果 家兔视网膜在缺血 -再灌注后 2~ 14d内表现为神经细胞持续丢失 ,视网膜层次逐渐不清 ,萎缩、变薄。其中神经节细胞、神经纤维及视锥、视杆对缺血最敏感 ,外颗粒层次之 ,内颗粒层最能耐受缺血 -再灌注后的损伤。结论 视网膜缺血 -再灌注损伤是个持续性、进行性的损伤过程 ,与功能变化相一致  相似文献   

3.
Abstract Objective: Diosmin, a natural flavone glycoside, possesses antioxidant activity and has been used to alleviate ischemia/reperfusion (I/R) injury. The aim of this study was to clarify whether the administration of diosmin has a protective effect against I/R injury induced using the high intraocular pressure (IOP) model in rat retina, and to determine the possible antioxidant mechanisms involved. Methods: Retinal I/R injury was induced in the rats by elevating the IOP to 110?mmHg for 60?min. Diosmin (100?mg/kg) or vehicle solution was administered intragastrically 30?min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. The levels of malondialdehyde (MDA) and the activities of total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the retinal tissues were determined 24?h after I/R injury. At 7 days post-I/R injury, electroretinograms (ERGs) were recorded, and the density of surviving retinal ganglion cells (RGCs) was estimated by counting retrograde tracer-labeled cells in whole-mounted retinas. Retinal histological changes were also examined and quantified using light microscopy. Results: Diosmin significantly decreased the MDA levels and increased the activities of T-SOD, GSH-Px, and CAT in the retina of rats compared with the ischemia group (P<0.05), and suppressed the I/R-induced reduction in the a- and b-wave amplitudes of the ERG (P<0.05). The thickness of the entire retina, inner nuclear layer, inner plexiform layer, and outer retinal layer and the number of cells in the ganglion cell layer were significantly less after I/R injury (P<0.05), and diosmin remarkably ameliorated these changes on retinal morphology. Diosmin also attenuated the I/R-induced loss of RGCs of the rat retina (P<0.05). Conclusion: Diosmin protected the retina from I/R injury, possibly via a mechanism involving the regulation of oxidative parameters.  相似文献   

4.
We examined whether citicoline has neuroprotective effect on kainic acid (KA)-induced retinal damage. KA (6 nmol) was injected into the vitreous of rat eyes. Rats were injected intraperitoneally with citicoline (500 mgkg-1, i.p.) twice (09:00 and 21:00) daily for 1, 3 and 7 days after KA-injection. The neuroprotective effects of citicoline were estimated by measuring the thickness of the various retinal layers. In addition, immunohistochemistry was conducted to elucidate the expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH). Morphometric analysis of retinal damage in KA-injected eyes showed a significant cell loss in the inner nuclear layer (INL) and inner plexiform layer (IPL) of the retinas at the 1, 3 and 7 days after KA injection, but not in the outer nuclear layers (ONL). At 1 and 3 days after citicoline treatment, no significant changes were detected in the retinal thickness and immunoreactivities of ChAT and TH. The immunoreactivities of ChAT and TH had almost disappeared in the retina after 7 days of KA injection. However, prolonged citicoline treatment for 7 days significantly attenuated the reduction of retinal thickness and immunoreactivities of ChAT and TH. The present study suggests that treatment with citicoline has neuroprotective effect on the retinal damage due to KA-induced neurotoxicity.  相似文献   

5.
背景研究证明,缺血后适应(IPC)对多种组织器官的缺血缺氧损伤均有一定的抵抗作用,但其对视网膜缺血缺氧的作用仍受到关注。目的探讨IPC对大鼠视网膜缺血-再灌注损伤(RIRI)后视网膜结构和功能的保护作用。方法将36只健康雄性Wistar大鼠以随机数字表法分为正常对照组、伪手术组、缺血-再灌注组、IPC组。利用前房灌注生理盐水升高眼压至100mmHg(1mmHg=0.133kPa)维持60min的方法制备RIRI大鼠模型,实施IPC处理鼠亚分为再灌注后即刻、1min、10min组(即IPCⅠ组、IPCⅡ组、IPCⅢ组),分别于实验后1d、7d行大鼠视网膜电图(ERG)检测,然后用过量麻醉法处死大鼠并制备视网膜切片,行苏木精-伊红染色,对各组大鼠视网膜厚度的变化和视网膜形态进行观察。采用SPSS13.0统计学软件的单因素方差分析对各组大鼠ERG各波振幅恢复率和视网膜厚度值的差异进行比较。结果实验后1d,与正常对照组大鼠比较,伪手术组大鼠视网膜结构接近正常,而缺血-再灌注组及IPCⅠ组、IPCⅡ组、IPCⅢ组大鼠视网膜均出现水肿,可见空泡变性,主要在内丛状层(IPL)及内核层(INL)。缺血-再灌注组及IPCⅠ组、IPCⅡ组、IPCⅢ组大鼠视网膜全层、INL、IPL及视网膜外层厚度值均明显高于正常对照组,差异均有统计学意义(均P〈0.05)。再灌注后7d,缺血-再灌注组大鼠视网膜全层厚度值明显低于正常对照组,差异均有统计学意义(均P〈0.05),尤以INL、IPL显著。IPCⅠ组、IPCⅡ组、IPCⅢ组大鼠视网膜全层、INL、IPL及视网膜外层厚度值均明显高于缺血-再灌注组,差异均有统计学意义(均P〈0.05)。再灌注后7d,缺血-再灌注组、IPC各组大鼠ERG a波、b波和OPs振幅恢复率明显低于伪手术组和正常对照组大鼠,差异均有统计学意义(均P〈0.05);而IPCⅠ组、IPCⅡ组、IPCⅢ组大鼠ERG a波、b波和OPs振幅恢复率明显高于缺血-再灌注组,差异均有统计学意义(均P〈0,05)。结论IPC对RIRI具有保护作用,在大鼠模型中,这种保护作用在再灌注后即刻至1min时最强。  相似文献   

6.
PURPOSE: To investigate the effect of D-allose, a rare sugar, against ischemia reperfusion injury in the rat retina. METHODS: Retinal ischemia was induced by increasing intraocular pressure to 130 mm Hg and maintaining that level for 45 minutes. Morphometric studies were performed to study the effect of D-allose on the histologic changes induced by ischemia in the rat retina. Glutamate release from the rat retina and intravitreal P(O2) profiles were monitored during and after ischemia with a microdialysis biosensor and oxygen-sensitive microelectrodes. The release of hydrogen peroxide stained with diaminobenzidine hydrochloride was monitored by an in vitro retinal ischemia model. RESULTS: Seven days after the ischemia, significant reductions in both the number of ganglion cells and the thickness of the inner plexiform layer were observed. Pretreatment with D-allose significantly inhibited the ischemic injury of the inner retina. A large release of glutamate occurred during the ischemia. After the recirculation, glutamate levels were increased again and reached a maximum in approximately 20 minutes. The increases in extracellular glutamate during and after ischemia tend to be suppressed by administration of d-allose. d-Allose attenuated the increase in intravitreal P(O2) during reperfusion. After the ischemia, production of hydrogen peroxide was detected within approximately 30 minutes. D-allose suppressed the production of hydrogen peroxide. CONCLUSIONS: These results suggest that D-allose may protect neurons by decreasing extracellular glutamate and attenuating oxidative stress in ischemic insult.  相似文献   

7.
Quantitation of ischemic damage in the rat retina.   总被引:10,自引:0,他引:10  
In order to determine thresholds for irreversible cellular injury in the rat retina, timed acute no-flow ischemic episodes of 30-180 min duration were produced by elevation of intraocular pressure (IOP) above systolic pressure. Quantitation of irreversible degeneration and cell loss following a 2-week post-ischemic interval was performed by computer-assisted measurements from histologic sections. Alterations of thickness of retinal layers and linear cell density were determined for ischemia of selected durations (30, 60, 80, 90, 120 and 180 min). Different thresholds were evident for inner and outer retinal damage. Neurons of the inner nuclear layers showed extensive loss with episodes at 60 min. Decrease in the thickness of the inner plexiform layer provided the best index of this inner nuclear damage. The outer retina was more resistant, with photoreceptors showing extensive damage only after 90 min in conjunction with pigment epithelial metaplasia and degeneration. Two-hour episodes produced full-thickness degeneration with loss of pigment epithelium and sparing of the peripheral retina. Greater sensitivity of the inner retina suggested problems with restoration of the retinal circulation. Horseradish peroxidase infusions did reveal central microcirculatory defects in retinal wholemounts of some specimens with episodes longer than 60 min. Refinements of the methods resulted in outcomes sufficiently reproducible for quantitative assessment of acute ischemic injury. The rat retina provides an economical basic tissue model of acute ischemic injury affecting neurons, glia, and microvasculature. Quantitation of this injury promises great utility in testing agents with potentially protective effects on acute ischemic injury.  相似文献   

8.
The purpose of the present study was to investigate whether systemically administered granulocyte colony-stimulating factor (G-CSF) can protect against acute ischemic reperfusion injury. Two groups of anesthetized adult male Lewis rats (n = 8 per group) were subjected to an acute (45 min) episode of retinal ischemic injury followed by subcutaneous administration of vehicle (5% dextrose) or G-CSF (0.1 mg/kg/day) once per day × 5 days. Prior to and one week following ischemic insult, retinal function was measured by scotopic electroretinography (ERG). Retinas were harvested and morphologically analyzed one week after ischemic insult. ERG a- and b-wave amplitudes were significantly reduced following ischemic reperfusion injury. G-CSF treatment attenuated ischemic-induced loss of retinal function. In control vehicle-treated rats, ischemic reperfusion injury elicited marked and selective thinning of inner retinal layers while only minimally affecting outer retinal layers. Therapeutically administered G-CSF minimized ischemic-mediated thinning of whole retina and inner retinal layers. G-CSF may be of therapeutic interest for the management of retinal ischemic disorders.  相似文献   

9.
The purpose of this study was to investigate whether nipradilol, a beta-blocker having both vasodilating and alpha(1)-blocking activities, can protect retinal cells from the injury induced by ischemia and reperfusion. Rats were anesthetized and, after an intravitreal injection of nipradilol, the intraocular pressure was raised for 45 min to induce retinal ischemia and reperfusion. Before, and 3 and 7 days after the ischemia, electroretinograms were recorded. After the ischemia, the mean amplitude of the b-waves in rats receiving 5 microl of 1.0 x 10(-6) M nipradilol was significantly larger than of controls (injected with phosphate-buffered saline). Histologically, the reduction in the number of retinal ganglion cells (1.0 x 10(-6) M), and the thickness of the inner and outer plexiform layers and the inner nuclear layer (1.0 x 10(-6), 10(-7) and 10(-8) M) was suppressed by nipradilol. These results indicate that nipradilol protected the retina against retinal ischemia and reperfusion and should be considered for therapeutic use in cases of transient retinal ischemia.  相似文献   

10.
Apoptosis and caspases after ischemia-reperfusion injury in rat retina   总被引:27,自引:0,他引:27  
PURPOSE: Extensive cell loss in the retinal ganglion cell layer (RGCL) and the inner nuclear layer (INL) was noted in a rat model of retinal ischemia-reperfusion injury by transient elevated intraocular pressure (IOP). The possible involvement of apoptosis and caspases was examined in this model of neuronal loss. METHODS: Transient elevated IOP was induced in albino Lewis rats through the insertion of a needle into the anterior chamber connected to a saline column. Elevated IOP at 110 mm Hg was maintained for 60 minutes. Groups of animals were euthanatized at various times after reperfusion, and their retinas were evaluated by morphology, agarose gel electrophoresis of DNA, in situ terminal deoxynucleotidyl transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling (TUNEL), immunohistochemistry of caspases II (ICH1) and III (CPP32), and morphometry. YVAD.CMK, a tetrapeptide inhibitor of caspases, was used to examine the involvement of caspases. RESULTS: A marked ladder pattern in retinal DNA gel analysis, typical of internucleosomal DNA fragmentation and characteristic of apoptosis, was present 12 and 18 hours after reperfusion. Labeling of nuclei in the RGCL and the inner nuclear layer (INL) by TUNEL was noted between 8 and 18 hours after reperfusion. Histologic and ultrastructural features typical of apoptosis were also observed in the inner retina after ischemia. YVAD.CMK administered during the ischemic period inhibited apoptotic fragmentation of retinal DNA and ameliorated the tissue damage. When administered intravitreally 0, 2, or 4 hours after reperfusion, YVAD.CMK was also effective in preserving the inner retina but had no significant effect when administered 6 or 8 hours after reperfusion. The inner retina showed transient elevated immunoreactivity of caspases II and III 4 and 8 hours after reperfusion. CONCLUSIONS: Retinal ischemia-reperfusion after transient elevated IOP induced apoptosis of cells in the retinal ganglion cell layer and the INL. Caspases may have a pivotal role in the early events of the apoptotic pathway(s). Rescue by using anti-apoptotic agents after ischemia-reperfusion is feasible.  相似文献   

11.
Niu Y  Zhang R  Zhou Z  Wang H  Liu F 《中华眼科杂志》2002,38(9):530-534
目的探讨玻璃体腔注射碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)对实验性视网膜缺血再灌注损伤的治疗作用.方法采用升高眼内压的方法,制作实验性视网膜缺血再灌注损伤大鼠模型.将Wistar大鼠随机分为正常组、缺血组及治疗组.再灌注开始时,缺血组大鼠玻璃体腔内注入平衡盐溶液,治疗组注入bFGF 2 μg.观察再灌注后不同时间段各组鼠视网膜组织学及超微结构变化,光镜下计数视网膜神经节细胞(retinal ganglion cells, RGCs),应用图像分析系统测量视网膜内层厚度.结果视网膜缺血再灌注早期,治疗组大鼠视网膜水肿较缺血组轻,各时间段治疗组大鼠视网膜内层厚度均较缺血组厚,治疗组大鼠RGCs数目多于缺血组.再灌注后168 h,缺血组大鼠神经纤维层厚度及RGCs数目明显低于正常组,而治疗组大鼠神经纤维层厚度及RGCs数目与正常组比较,差异无显著意义(P<0.05).再灌注后24 h,缺血组大鼠RGCs核膜肿胀,线粒体嵴模糊不清,可见凋亡小体,神经纤维中微管模糊、减少甚至消失;而治疗组仅部分核膜轻度肿胀,胞浆内细胞器丰富,线粒体及微管结构较清楚.结论大鼠玻璃体腔注射bFGF对实验性视网膜缺血再灌注损伤具有治疗作用.  相似文献   

12.
Changes of GABA metabolic enzymes in acute retinal ischemia.   总被引:2,自引:0,他引:2  
It is reported that GABA accumulates in Müller cells in ischemic and diabetic rat retina. To investigate the mechanism of GABA accumulation in Müller cells, we localized GABA and glutamate in ischemic rat retina and measured the activity of GAD and GABA-T, enzymes involved in GABA metabolism. Using general anesthesia, we incised the bulbar conjunctiva of the rat around the limbus and clamped the left optic nerve. A sham operation was performed on the right eyes. Ocular ischemia was sustained for 30, 60 and 90 minutes. Rat eyes were enucleated immediately after ischemia and prepared for immunohistochemistry and enzyme activity measurement. Glutamate-like immunoreactivity (Glu-IR) in the sham-operated rat retina was observed in all retinal layers, showing intense staining in the nerve fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL). Glu-IR increased in the outer plexiform layer (OPL) and outer nuclear layer (ONL) in an ischemic time-dependent manner. GABA-like immunoreactivity (GABA-IR) in sham-operated rat retina was observed in NFL, GCL, IPL and inner nuclear layer (INL). When the ischemic time was extended, GABA-IR intensely stained Müller cells. GAD activity was not changed in ischemic rat retina as compared to normal rat retina, but GABA-T activity was significantly decreased in ischemic rat retina. These results suggested that glutamate was induced by ischemia and was converted to GABA by GAD activity. Increased GABA was not metabolized because GABA-T activity was decreased. GABA accumulation in Müller cells progressed during the change in activity of these metabolic enzymes.  相似文献   

13.
Trimetazidine is an anti-ischemic agent which is frequently prescribed as a prophylactic treatment of episodes of angina pectoris and as a symptomatic treatment of vertigo and tinnitus. It has also shown beneficial effects in models of visual dysfunction, but the mechanism(s) by which this occurs is as yet undefined. The present study was intended to evaluate the influence of trimetazidine on retinal damage induced by ischemia-reperfusion in a rat model. Retinal ischemia was induced by increasing intraocular pressure to 160 mm Hg for 60 min. Trimetazidine or buffer controls were administered 3 days before the ischemia or in the postischemic period. The degree of retinal damage was assessed after 15 and 30 days of reperfusion after the ischemic insult by histopathologic study according to Hughes' quantification of ischemic damage. Retinal ischemia led to significant reductions in thickness and cell number, mainly in the inner retinal layers. The results from the study demonstrate that treatment with intraperitoneally injected trimetazidine conferred significant protection against retinal ischemic damage. Better results were obtained in the pretreatment group after 15 days of reperfusion. Trimetazidine protects the rat retina from pressure-induced ischemic injury and might be considered a potential therapeutic modality for combating retinal ischemia.  相似文献   

14.
Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.  相似文献   

15.
目的 探讨玻璃体腔内注射蛇毒神经生长因子,对实验性视网膜缺血再灌注损伤是否具有神经保护作用.方法 采用升高大鼠眼内压的方法,制作实验性视网膜缺血再灌注损伤模型.实验组和对照组分别注入蛇毒神经生长因子和平衡盐溶液,应用图像分析系统计数视网膜神经节细胞和测量视网膜内层厚度,透射电镜观察视网膜超微结构.结果 视网膜缺血再灌注开始,实验组大鼠视网膜水肿、视网膜内层厚度变薄和视网膜神经节细胞(RGCs)数目减少较对照组轻,并且实验组于再灌注24h后RGCs数目逐渐增多,48h后视网膜内层厚度逐渐增加.再灌注后168h,对照组大鼠视网膜内层厚度及RGCs数目明显低于实验组,差异显著有统计学意义(P<0.05);电镜观察对照组再灌注后24 h出现膜盘排列紊乱、变形,神经纤维层内大量的线粒体肿胀、空泡化和RGCs核染色质浓缩、边集,出现凋亡小体,胞浆内细胞器空泡化且大量减少.而实验组膜盘排列尚整齐,RGCs轻度肿胀,胞浆内细胞器较丰富,神经纤维层中的线粒体轻度肿胀,微管结构较清楚.结论 通过向大鼠玻璃体腔内注射蛇毒神经生长因子可以减轻视网膜内层的损伤,对实验性视网膜缺血再灌注损伤有神经保护作用.  相似文献   

16.
PURPOSE: The window of protection afforded by 3-aminobenzamide (3-ABA), a poly-(ADP-ribose) polymerase (PARP) inhibitor, against apoptotic loss of inner retinal elements after ischemia-reperfusion insult in rats was examined. METHODS: Ischemia-reperfusion injury to the retinas in albino Lewis rats was induced by elevated intraocular pressure (IOP) through cannulation of the anterior chamber with a needle connected to a saline column delivering a pressure of 110 mm Hg. The ischemic period was held at 60 minutes, and reperfusion was established immediately afterward. 3-Aminobenzamide (3-ABA) was administered intravitreally at 0, 4, 8, 12, 18, or 24 hours after reperfusion and its effect evaluated by morphology and morphometry of the inner retinas at 7 days after reperfusion. Immunohistochemistry of poly-(ADP-ribose), a product of PARP activity, and Western blot analysis for PARP were performed on retinas at 0, 4, 8, 12, 18, and 24 hours after reperfusion. RESULTS: Morphology and morphometry showed significantly better preserved inner retinas in animals receiving 3-ABA between 12 and 18 hours after reperfusion. Immunohistochemical study of poly-(ADP-ribose) showed elevated levels at the retinal ganglion cell layer and the inner nuclear layer at 12 and 18 hours after reperfusion. Western blot analysis of PARP showed a notable increase in the 116-kDa band (PARP) from 4 to 18 hours after reperfusion. CONCLUSIONS: Administration of 3-ABA at 12 or 18 hours after ischemia, when there was accumulation of poly-(ADP-ribose) in the inner retina, significantly ameliorated retinal ischemia-reperfusion injury. These findings, together with earlier reports from our laboratory, are consistent with a late and pivotal role of PARP in apoptotic loss of inner retinal elements after ischemia-reperfusion insult to the retina.  相似文献   

17.
PURPOSE: Ischemic preconditioning (IP) protects the retina from the damaging effect of subsequent ischemia in vivo. We aimed to investigate the histological alterations induced by the protective effect of IP to the retina. METHODS: The eyes of the rats were rendered ischemic by intra-ocular pressure (IOP) elevation. IP procedure consisted of producing ischemia for 5 minutes. Sham operation was similar to IP procedure except the pressure elevation. The operational eyes of sham and IP group underwent 60 minutes of ischemia 24 hours after the first procedure. The eyes contralateral to the experimental eyes made up the control group. The eyes were histologically analysed one week after the ischemia. RESULTS: The total retinal thickness of the sham group was significantly less than total retinal thickness of the control group (p < 0.001). There was not a significant difference between control and IP group regarding the total retinal thickness (p > 0.05). The thickness of the inner retinal layers of the sham group were significantly less than corresponding retinal layers of the control group (p < 0.001). The inner plexiform layer (IPL) and inner nuclear layer (INL) thickness values of the sham group were significantly less than same layers of the IP group (p < 0.001). Ganglion cell layer (GCL) thickness of the IP group was significantly less than GCL thickness of the control group (p < 0.001). IPL thickness of the IP group was significantly less than that of control group's (p < 0.05). The GCL and total retinal thickness of the IP group were significantly more than thickness of the corresponding layers of the sham group (p < 0.05). CONCLUSION: IP considerably protects inner retinal layers from subsequent ischemic damage in a high IOP ischemic model. This endogenous process could further be utilized to tailor specific neuroprotective strategies for retinal cells.  相似文献   

18.
研究Rho激酶抑制剂Y27632 对视网膜缺血再灌注损伤大鼠视网膜组织形态学的影响。方法:实验研究。将60只SD大鼠随机分为4组,每组15只:正常对照组(正常组)、急性缺血再灌注损伤组(IRI组)、0.9%氯化钠溶液对照组(生理盐水组)、Y27632治疗组(Y27632组)。再灌注损伤后24 h(10只)和168 h(5只)处死各组动物,行HE染色、ADP酶染色检查,光镜下观察大鼠视网膜组织病理学变化及视网膜厚度变化。数据采用单因素方差分析。结果:正常组大鼠视网膜结构清晰,三层细胞结构排列整齐。IRI组于再灌注24 h后视网膜厚度增加,内外丛状层组织疏松,视网膜节细胞、内外核层细胞水肿明显、排列紊乱,视网膜节细胞减少。168 h后,视网膜水肿消退、厚度变薄、呈萎缩状,神经节细胞及内外核层细胞数量减少,在视网膜前和神经纤维层可见毛细血管。再灌注 24 h后,IRI组视网膜厚度较正常组增加(P=0.005),Y27632组视网膜厚度低于生理盐水组(P=0.032)。再灌注168 h后,IRI组视网膜厚度低于正常组(P<0.001),Y27632组视网膜厚度较生理盐水组增加(P=0.025)。正常组大鼠视网膜血管自视乳头发出,向四周呈放射状均匀分布,毛细血管网结构清晰。再灌注24 h后,IRI组视网膜血管管径变细,走行较僵直,分支减少,视乳头周围及中周部视网膜可见大片无灌注区,无灌注区周围可见新生血管芽渐成网状。Y27632组可见视乳头周围及中周部视网膜局部无灌注区形成,无灌注区周围可见新生血管。后极部4PD无灌注区面积明显小于IRI组及生理盐水组。结论:Y27632玻璃体腔注射可以减轻视网膜缺血再灌注早期的视网膜水肿,减少视网膜神经节细胞的凋亡,减少视网膜新生血管生成,减轻再灌注晚期的视网膜萎缩,具有视神经保护作用。  相似文献   

19.
目的:观察重组腺病毒介导的色素上皮衍生因子(Ad-PEDF)对大鼠视网膜缺血再灌注损伤的保护作用及机制。方法:选用健康大鼠96只,随机分为正常组、缺血再灌注组、缺血再灌注+Ad-CMV组,缺血再灌注+Ad-PEDF组,以前房加压的方法制备大鼠视网膜缺血再灌注模型,缺血再灌注+Ad-CMV组,缺血再灌注+Ad-PEDF组分别玻璃体腔注射Ad-CMV或Ad-PEDF1μL(滴度3.8×109/PFU),每组按照时间点12,24,72,168h,为4亚组,光学显微镜观察视网膜组织切片情况,并测量视网膜内层厚度及神经节细胞层神经节细胞数量。以TUNEL方法观察大鼠视网膜神经节细胞凋亡情况。结果:Ad-PEDF组视网膜内层厚度均超过缺血组及缺血+Ad-CMV组,Ad-PEDF组神经节细胞数目多于缺血组及Ad-CMV组,Ad-PEDF组视网膜神经节细胞凋亡细胞少于缺血组及Ad-CMV组,凋亡程度减轻,上述差异均具有显著性(P<0.05)。结论:腺病毒介导的色素上皮衍生因子玻璃体腔注射能够恢复大鼠视网膜缺血再灌注损伤所致的视网膜内层厚度降低,神经节细胞密度减少,具有保护作用。  相似文献   

20.
The advent of treatment modalities with the potential to ameliorate retinal ischemic injury calls for methods allowing their quantitative assessment. We thus established a model of pressure-induced retinal ischemia/reperfusion injury in rats. The intraocular pressure (IOP) was raised to 110 mm Hg by cannulation of the anterior chamber for a duration of 0, 90 or 120 min. The eyes were reperfused for 3 or 7 days. Morphologically, retinal injury occurred in a pattern consistent with retinal and choroidal vascular occlusion. Damage increased in severity with prolonged durations of ischemia. Morphometric determination of the mean thickness of inner retinal layers (MTIRL) revealed significant differences between controls and the 90- or 120-min ischemia groups (p less than 0.05 and p less than 0.01, respectively). The difference in MTIRL between 3 and 7 days of reperfusion was not significant. Replacement of normal saline by a solution of 5% dextrose in the hydrostatic device used to increase the IOP led to a decrease in retinal injury after 120 min of ischemia (p less than 0.01). This model combines a relatively simple methodology, cost-effective execution and a fast, semicomputerized method of quantitation. Depletion of carbohydrates during ischemia may contribute to retinal injury in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号