首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Representation of the temporal envelope of sounds in the human brain   总被引:7,自引:0,他引:7  
The cerebral representation of the temporal envelope of sounds was studied in five normal-hearing subjects using functional magnetic resonance imaging. The stimuli were white noise, sinusoidally amplitude-modulated at frequencies ranging from 4 to 256 Hz. This range includes low AM frequencies (up to 32 Hz) essential for the perception of the manner of articulation and syllabic rate, and high AM frequencies (above 64 Hz) essential for the perception of voicing and prosody. The right lower brainstem (superior olivary complex), the right inferior colliculus, the left medial geniculate body, Heschl's gyrus, the superior temporal gyrus, the superior temporal sulcus, and the inferior parietal lobule were specifically responsive to AM. Global tuning curves in these regions suggest that the human auditory system is organized as a hierarchical filter bank, each processing level responding preferentially to a given AM frequency, 256 Hz for the lower brainstem, 32-256 Hz for the inferior colliculus, 16 Hz for the medial geniculate body, 8 Hz for the primary auditory cortex, and 4-8 Hz for secondary regions. The time course of the hemodynamic responses showed sustained and transient components with reverse frequency dependent patterns: the lower the AM frequency the better the fit with a sustained response model, the higher the AM frequency the better the fit with a transient response model. Using cortical maps of best modulation frequency, we demonstrate that the spatial representation of AM frequencies varies according to the response type. Sustained responses yield maps of low frequencies organized in large clusters. Transient responses yield maps of high frequencies represented by a mosaic of small clusters. Very few voxels were tuned to intermediate frequencies (32-64 Hz). We did not find spatial gradients of AM frequencies associated with any response type. Our results suggest that two frequency ranges (up to 16 and 128 Hz and above) are represented in the cortex by different response types. However, the spatial segregation of these two ranges is not systematic. Most cortical regions were tuned to low frequencies and only a few to high frequencies. Yet, voxels that show a preference for low frequencies were also responsive to high frequencies. Overall, our study shows that the temporal envelope of sounds is processed by both distinct (hierarchically organized series of filters) and shared (high and low AM frequencies eliciting different responses at the same cortical locus) neural substrates. This layout suggests that the human auditory system is organized in a parallel fashion that allows a degree of separate routing for groups of AM frequencies conveying different information and preserves a possibility for integration of complementary features in cortical auditory regions.  相似文献   

2.
1. The discharge of individual neurons in the visual cortex and lateral geniculate nucleus (LGN) of anesthetized and paralyzed cats and kittens was examined for the presence of oscillatory activity. Neural firing was evoked through the monoptic or dichoptic presentation of drifting gratings and random sequences of flashed bars. The degree to which different oscillatory frequencies were present in neural discharge was quantified by computation of the power spectra of impulse train responses. 2. Action potentials from single cells were recorded extracellularly and isolated on the basis of amplitude. Receptive-field properties of the neurons under study were characterized initially by their discharge in response to gratings of sinusoidal luminance. By varying orientation and spatial frequency, optimal stimulus characteristics were determined. Oscillation analysis was performed on spike trains acquired during repeated presentations of the optimal stimulus by identification of power spectra peaks in the frequency range of rhythmic potentials observed in electroencephalograph studies (30-80 Hz). The amplitude and frequency of the largest peak in this range was used to characterize oscillatory strength and frequency. All discharge in which the peak amplitude exceeded the high-frequency noise by a factor > 1.5 was classified as oscillatory. 3. Of the 342 cortical cells examined, 147 cells displayed oscillatory activity in the 30 to 80-Hz range during portions of their visual response. Sixty out of 169 simple cells, 82 out of 166 complex cells, and 5 out of 7 special complex cells exhibited oscillations. There was no laminar bias in the distribution of oscillatory cells; the proportions of oscillatory cells were similar in all layers. All oscillatory discharge was variable with respect to frequency and strength between successive presentations of the same optimal stimulus. In as little as 10 s, for example, peak frequencies shifted by a factor of two. For many cells, these trial-to-trial variations obscured detectable oscillations when all trials were averaged together. 4. The potential role of neuronal maturation in the generation of oscillatory activity was investigated by studying neuronal responses from kittens at 4 wk postnatal. Of the 80 kitten cells studied, 27 exhibited oscillatory discharge. Although oscillations in the kitten visual cortex spanned the same frequency range as that seen in the adult, oscillations in the midfrequency range (36-44 Hz) are more common in the adult cortex. 5. To explore the possibility that oscillations might play a functional role in vision, we investigated the dependence of oscillations on different stimulus parameters.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Summary This paper describes the temporal tuning of cells in the lateral geniculate nucleus of the cat (27 X cells, 51 Y cells) and how this changes with stimulus contrast. Drifting sinusoidal gratings of optimal spatial frequency were presented at 7 temporal frequencies (0.5, 1, 2, 4, 8,16 and 32 Hz) and 4 contrasts (10, 20, 40, 80%). For some cells response growth at all temporal frequencies was proportional to changes in contrast. Thus, their temporal tuning functions, on log-log axes, were displaced vertically with increasing contrast. This shift also largely characterizes the response to low temporal frequencies of the other neurons studied. For these other cells, however, responses to high temporal frequencies grew disproportionately large with increasing contrast generally causing their tuning functions to change shape. Typically the peaks of these functions shifted to higher frequencies at higher contrasts. Most of the X cells studied displayed behavior of the first type, while Y cells usually followed the second pattern. This qualitative impression was confirmed quantitatively. Cubic spline functions were fit to the temporal tuning functions obtained at different contrast levels and the peaks of the curves were extracted. X and Y cells preferred similar temporal frequencies at low contrast levels (X mean=8.1 Hz; Y mean=8.4 Hz) but Y cell values were significantly higher at higher contrasts (80%) (X mean= 12.0 Hz; Y mean=16.8 Hz). These contrast-dependent changes in the temporal characteristics of geniculate cells resemble those described for retinal ganglion cells by Shapley and Victor (1978 and subsequent). Thus, the gain control behavior of geniculate cells probably reflects the temporal properties of their retinal inputs with relatively little modification.  相似文献   

4.
Summary Extracellular activity from vestibular nuclei neurons and vertical eye movements were recorded in the alert cat during sinusoidal optokinetic stimulation in the vertical plane at frequencies varying from 0.0125 Hz to 0.75 Hz. Among a population of 96 vestibular units located in and around Deiters' nucleus, 73 neurons (76%) displayed a firing rate modulation which followed the input at the standard parameters of visual stimulation (0.05 Hz; 10.1 deg/s or 9.1 cm/s peak to peak velocity). Two different patterns of modulation were found. In 42 cells (57%) an increase in the firing rate was observed during motion of the visual scene in the downward direction, while 31 neurons (43%) showed the opposite behavior, with an enhanced firing rate during upward movement. The phase of the neuronal responses was close (± 45°) to the velocity peaks (+90°: downward and -90°: upward) of visual scene motion for 65 among the 73 neurons. Mean values of phase was-6.1 ± 19.5° (SD) and -3.2 ± 15.5° (SD) with respect to the +90° and -90° velocity peaks, respectively. In the frequency range 0.0125–0.75 Hz, the phase of the neuronal responses remained almost stable, with only a slight lag which reaches -22° at the 0.25 Hz visual stimulation. The firing rate modulation was found to be predominant at low frequencies (0.0125 Hz–0.25 Hz), with three distinct peaks of modulation occurring either at 0.025 Hz, 0.10 Hz or 0.25 Hz, depending on the recorded cells. Above 0.5 Hz, the cell modulation was very poorly developed or even absent. A gain attenuation was observed in all units, which was more important in cells showing a peak of modulation at 0.025 Hz as compared with the others (-20.7 dB vs -9.6 dB, respectively, in the 0.025 Hz–0.25 Hz decade). The gain of the optokinetic reflex (OKR) progressively decreased from mean values of 0.78 ± 0.15 to 0.05 ± 0.06 in the 0.025 Hz–0.5 Hz frequency range. A close correlation was observed between the OKR slow phase velocity and the modulation of the neuronal responses in the two cell populations with maximal modulations at 0.10 Hz or 0.25 Hz. No correlations were noticed in the third population characterized by a peak of modulation at 0.025 Hz. In all units, the phase of eye movement velocity and of neuronal responses were both related to the velocity of the visual surround motion. These correlations were also found when varying the amplitude of the visual stimulation at a fixed frequency. Saturation was observed in the unit responses at velocities above 68.5°/s. When considering both the gain attenuation in the frequency range and the correlation between firing rate modulation and OKR slow phase velocity, two rather different cell populations can be distinguished: one with neurons peaking at 0.025 Hz (strong gain attenuation; no correlation with OKR velocity) and one with neurons peaking at 0.10 Hz or 0.25 Hz (slight gain attenuation; correlation with OKR velocity). This study points to the influence of visual motion cues on vestibular nuclei unit activity in the low-frequency range. A velocity coding of visual — surround motion in the vertical plane is performed by vestibular neurons. Our results in the alert cat suggest that both retinal (retinal slip) and extraretinal (proprioceptive afferences from eye muscles, efference copy) inputs can be involved in this visually induced modulation of vestibular nuclei neurons.  相似文献   

5.
Summary In unanesthetized guinea pigs, thalamic (CGM), and cortical (auditory I) neurons were recorded simultaneously. Nine of 69 neuron pairs showed a positive cross-correlation of their spontaneous activities, with increased discharge probability of the cortical neuron beginning 2–5 ms after the discharge of the CGM-neuron. The individual neurons of such pairs had an identical CF and the same spectral responsiveness.The responses of cortical neurons to pure tones were much more phasic than those of the corresponding CGM-neurons. Thalamic neurons could be driven up to much higher AM- and FM-modulation frequencies (100 Hz) than cortical neurons, which usually ceased to follow AM-frequencies above 20 Hz. Stronger or weaker suppression of tonic response components in cortical and thalamic neurons and the lower AM-range of cortical neurons is related to stronger or weaker intracortical and intrathalamic inhibition respectively. Response characteristics to FM-stimuli are similar to those of AM-stimuli.All CGM and cortical neurons responded to a variety of natural calls of the same or of other species. Responses of CGM-cells represented more components of a call than cortical cells even if the two cells were synaptically connected. In cortical cells, repetitive elements of a call were not represented if the repetition rate was too high. High modulation frequencies within a call, such as those of the fundamental frequency, could still be separated in the response of some CGM-neurons, but never in those of cortical neurons. Both CGM and cortical cells responded essentially to transients (amplitude or frequency modulations) within a call, if spectral components of such elements were within the spectral sensitivity of the cell. Spectral components outside the spectral sensitivity range could result in suppression of spontaneous discharge rate. Responses of cortical and CGM-cells, and thus the representation of call elements by neuronal responses, varied with the intensity of a call. It is suggested that, at higher levels of the auditory system, essential information about the temporal features of complex sounds may be represented by neural responses to transients in various spectral regions.This work was partially supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 33  相似文献   

6.
Odorants induce specific modulation of mitral/tufted (MT) cells' firing rate in the mammalian olfactory bulb (OB), inducing temporal patterns of neuronal discharge embedded in an oscillatory local field potential (LFP). While most studies have examined anesthetized animals, little is known about the firing rate and temporal patterns of OB single units and population activity in awake behaving mammals. We examined the firing rate and oscillatory activity of MT cells and LFP signals in behaving rats during two olfactory tasks: passive exposure (PE) and two-alternative (TA) choice discrimination. MT inhibitory responses are predominant in the TA task (76.5%), whereas MT excitatory responses predominate in the PE task (59.2%). Rhythmic discharge in the 12- to 100-Hz range was found in 79.0 and 68.9% of MT cells during PE and TA tasks, respectively. Most odorants presented in PE task increase rhythmic discharges at frequencies >50 Hz, whereas in TA, one of four odorants produced a modest increment <40 Hz. LFP oscillations were clearly modulated by odorants during the TA task, increasing their oscillatory power at frequencies centered at 20 Hz and decreasing power at frequencies >50 Hz. Our results indicate that firing rate responses of MT cells in awake animals are behaviorally modulated with inhibition being a prominent feature of this modulation. The occurrence of oscillatory patterns in single- and multiunitary discharge is also related to stimulation and behavioral context, while the oscillatory patterns of the neuronal population showed a strong dependence on odorant stimulation.  相似文献   

7.
Accurate temporal coding of low-frequency tones by spikes that are locked to a particular phase of the sine wave (phase-locking), occurs among certain groups of neurons at various processing levels in the brain. Phase-locked responses have previously been studied in the inferior colliculus and neocortex of the guinea pig and we now describe the responses in the auditory thalamus. Recordings were made from 241 single units, 32 (13%) of which showed phase-locked responses. Units with phase-locked responses were mainly (82%) located in the ventral division of the medial geniculate body (MGB), and also the medial division (18%), but were not found in the dorsal or shell divisions. The upper limiting frequency of phase-locking varied greatly between units (60-1,100 Hz) and between anatomical divisions. The upper limit in the ventral division was 520 Hz and in the medial was 1,100 Hz. The range of steady-state delays calculated from phase plots also varied: ventral division, 8.6-14 ms (mean 11.1 ms; SD 1.56); medial division, 7.5-11 ms (mean 9.3 ms; SD 1.5). Taken together, these measurements are consistent with the medial division receiving a phase-locked input directly from the brain stem, without an obligatory relay in the inferior colliculus. Cells in both the ventral and medial divisions of the MGB showed a response that phase-locked to the fundamental frequency of a guinea pig purr and may be involved in analyzing communication calls.  相似文献   

8.
Summary The responses of single and multi units in the medial geniculate body of the squirrel monkey (Saimiri sciureus) to modulation frequency, modulation depth and changes in absolute intensity of sinusoidally amplitude modulated (AM) sounds were studied. Both spike-frequency and spike rate modulation were used as a measure for neuronal response. Spike rate modulation was derived from FFT (Fast-Fourier-Transformation) analysis of the PSTHs. In all cases (n = 133) spike rate modulation was shown to be dependent on the stimulus modulation frequency: Most neurons responded best to one modulation frequency, i.e., they showed a modulation transfer function with bandpass characteristic; only a few displayed a low pass or multiple peaked transfer characteristic. The majority of the neurons responded best in a range from 4 to 64 Hz, with a peak at 32 Hz and a median at 16 Hz. Such modulation frequencies are common in parts of the species vocal repertoire.  相似文献   

9.
Cortical activity and perception are not driven by the external stimulus alone; rather sensory information has to be integrated with various other internal constraints such as expectations, recent memories, planned actions, etc. The question is how large scale integration over many remote and size-varying processes might be performed by the brain. We have conducted a series of EEG recordings during processes thought to involve neuronal assemblies of varying complexity. While local synchronization during visual processing evolved in the gamma frequency range, synchronization between neighboring temporal and parietal cortex during multimodal semantic processing evolved in a lower, the beta1 (12-18 Hz) frequency range, and long range fronto-parietal interactions during working memory retention and mental imagery evolved in the theta and alpha (4-8 Hz, 8-12 Hz) frequency range. Thus, a relationship seems to exist between the extent of functional integration and the synchronization-frequency. In particular, long-range interactions in the alpha and theta ranges seem specifically involved in processing of internal mental context, i.e. for top-down processing. We propose that large scale integration is performed by synchronization among neurons and neuronal assemblies evolving in different frequency ranges.  相似文献   

10.
Oscillations may play a role in the functional organization of cortico-basal ganglia-thalamocortical circuits, and it is important to understand their underlying mechanisms. The cortex often drives basal ganglia (BG) activity, and particularly, oscillatory activity in the subthalamic nucleus (STN). However, the STN may also indirectly influence cortex. The aim of this study was to characterize the delayed (>200 ms) responses of STN neurons to synchronized cortical inputs, focusing on their relationship with oscillatory cortical activity. We recorded the short-latency and delayed responses of STN units and frontal electrocorticogram (ECoG) to cortical stimulation in anaesthetized rats. Similar to previous studies, stimulation of ipsilateral frontal cortex, but not temporal cortex, evoked a short-latency triphasic response, followed by a sustained reduction or pause in firing, in rostral STN units. Caudal STN units did not show the short-latency triphasic response but often displayed a prolonged firing reduction. Oscillations in STN unit activity and ECoG were common after this sustained firing reduction, particularly between 200 and 600 ms after frontal cortical stimulation. These delayed oscillations were significantly coherent in a broad frequency band of 5–30 Hz. Coherence with ECoG at 5–15 Hz was observed throughout STN, though coherence at 15–30 Hz was largely restricted to rostral STN. Furthermore, oscillatory responses at 5–30 Hz in rostral STN predominantly led those in cortex (mean latency of 29 ms) after frontal cortical stimulation. These findings suggest that STN neurons responding to corticosubthalamic inputs may provide a delayed input to cortex, via BG output nuclei, and thence, thalamocortical pathways.  相似文献   

11.
Little is known about the brain-wide correlation of electrophysiological signals. We found that spontaneous oscillatory neuronal activity exhibited frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography. Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz) and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency-specific power envelope correlations.  相似文献   

12.
Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ~80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.  相似文献   

13.
We have proposed models for the ionic basis of oscillatory bursting of respiratory pacemaker neurons in the pre-B?tzinger complex. In this paper, we investigate the frequency control and synchronization of these model neurons when coupled by excitatory amino-acid-mediated synapses and controlled by convergent synaptic inputs modeled as tonic excitation. Simulations of pairs of identical cells reveal that increasing tonic excitation increases the frequency of synchronous bursting, while increasing the strength of excitatory coupling between the neurons decreases the frequency of synchronous bursting. Low levels of coupling extend the range of values of tonic excitation where synchronous bursting is found. Simulations of a heterogeneous population of 50-500 bursting neurons reveal coupling effects similar to those found experimentally in vitro: coupling increases the mean burst duration and decreases the mean burst frequency. Burst synchronization occurred over a wide range of intrinsic frequencies (0.1-1 Hz) and even in populations where as few as 10% of the cells were intrinsically bursting. Weak coupling, extreme parameter heterogeneity, and low levels of depolarizing input could contribute to the desynchronization of the population and give rise to quasiperiodic states. The introduction of sparse coupling did not affect the burst synchrony, although it did make the interburst intervals more irregular from cycle to cycle. At a population level, both parameter heterogeneity and excitatory coupling synergistically combine to increase the dynamic input range: robust synchronous bursting persisted across a much greater range of parameter space (in terms of mean depolarizing input) than that of a single model cell. This extended dynamic range for the bursting cell population indicates that cellular heterogeneity is functionally advantageous. Our modeled system accounts for the range of intrinsic frequencies and spiking patterns of inspiratory (I) bursting cells found in the pre-B?tzinger complex in neonatal rat brain stem slices in vitro. There is a temporal dispersion in the spiking onset times of neurons in the population, predicted to be due to heterogeneity in intrinsic neuronal properties, with neurons starting to spike before (pre-I), with (I), or after (late-I) the onset of the population burst. Experimental tests for a number of the model's predictions are proposed.  相似文献   

14.
Single-unit and multiunit activities were recorded from dorsal column nuclei of anesthetized rats in order to study the characteristics of the oscillatory activity expressed by these cells and their neuronal interactions. On the basis of their firing rate characteristics in spontaneous conditions, two types of dorsal column nuclei cell have been identified. Low-frequency cells (74%) were silent or displayed a low firing rate (1.9+/-0.48 spikes/s), and were identified as thalamic-projecting neurons because they were activated antidromically by medial lemniscus stimulation. High-frequency cells (26%) were characterized by higher discharge rates (27.2+/-5.1 spikes/s). None of them was antidromically activated by medial lemniscus stimulation. Low-frequency neurons showed a non-rhythmic discharge pattern spontaneously which became rhythmic under sensory stimulation of their receptive fields (48% of cases; 4.8+/-0.23Hz). All high-frequency neurons showed a rhythmic discharge pattern at 13.8+/- 0.68Hz either spontaneously or during sensory stimulation of their receptive fields. The shift predictor analysis indicated that oscillatory activity is not phase-locked to the stimulus onset in either type of cell, although the stimulus can reset the phase of the rhythmic activity of high-frequency cells. Cross-correlograms between pairs of low-frequency neurons typically revealed synchronized rhythmic activity when the overlapping receptive fields were stimulated. Rhythmic synchronization of high-frequency discharges was rarely observed spontaneously or under sensory stimulation. High-frequency neuronal firing could be correlated with the low-frequency neuronal activity or more often with the multiunit activity during sensory stimulation. Moreover, the presence of oscillatory activity modulated the sensory responses of dorsal column nuclei cells, favoring their responses.These findings indicate that thalamic-projecting and non-projecting neurons in dorsal column nuclei exhibited distinct oscillatory characteristics. However, both types of neuron may be entrained into an oscillatory rhythmic pattern when their overlapping receptive fields are stimulated, suggesting that in those conditions the dorsal column nuclei generate a populational oscillatory output to the somatosensory thalamus which could modulate and amplify the effectiveness of the somatosensory transmission.  相似文献   

15.
Summary We recorded single neuron responses in the cat's lateral geniculate nucleus (LGN) and visual cortex to compound stimuli composed of two sinusoidal gratings in a 21 frequency ratio. To probe visual receptive field symmetry, we varied the relative spatial phase of the two components and measured the effect on neuronal responses. We expected that on-center LGN neurons would respond best to gratings combined in positive cosine (bright bar) phase, while off-center LGN neurons would respond best to gratings combined in negative cosine (dark bar) phase. When drifting stimuli were used, cells' phase preferences were roughly 90 deg away from the expected values; when stationary, contrast-modulated stimuli were used, phase preferences were as originally predicted. Computer simulations showed that this discrepancy could be explained by taking into account the cells' temporal properties. Thus, tests using drifting stimuli confound the spatial structure of visual neural receptive fields with their temporal response characteristics. A small sample of data from cortical neurons reveals the same confound.  相似文献   

16.
The spatial and temporal visual sensitivity to drifting sinusoidal gratings was studied in 75 neurons of the feline anterior ectosylvian visual area (AEV). Extracellular single-unit recordings were performed in halothane-anesthetized (0.6%), immobilized, artificially ventilated cats. Most cells were strongly sensitive to the direction of drifting gratings. The mean value of the direction tuning widths was approximately 90 deg. Most of the cells (69 of the 75 cases) displayed rather narrowly tuned band-pass characteristics in the low spatial frequency range, with a mean optimal spatial frequency of 0.2 cycles/degree (c/deg). The mean spatial bandwidth was 1.4 octaves. The remainder of the units was low-pass tuned. A majority of the units responded optimally to high temporal frequencies (mean 6.3 Hz), although some cells did exhibit preferences for every examined temporal frequency between 0.6 Hz and 10.8 Hz. The temporal frequency-tuning functions mostly revealed a band-pass character with a mean temporal bandwidth of 1.1 octaves. Our results demonstrate that the neurons along the anterior ectosylvian sulcus display particular spatial and temporal characteristics. The AEV neurons, with their preference for low spatial frequencies and with their fine spatial and temporal tuning properties, seem to be candidates for special tasks in motion perception.  相似文献   

17.
Inferior olivary (IO) neurons are electrically coupled through gap junctions and generate synchronous subthreshold oscillations of their membrane potential at a frequency of 1-10 Hz. Whereas the ionic mechanisms of these oscillatory responses are well understood, their origin and ensemble properties remain controversial. Here, the role of gap junctions in generating and synchronizing IO oscillations was examined by combining intracellular recordings with high-speed voltage-sensitive dye imaging in rat brain stem slices. Single cell responses and ensemble synchronized responses of IO neurons were compared in control conditions and in the presence of 18beta-glycyrrhetinic acid (18beta-GA), a pharmacological gap junction blocker. Under our experimental conditions, 18beta-GA had no adverse effects on intrinsic electroresponsive properties of IO neurons, other than the block of gap junction-dependent dye coupling and the resulting change in cells' passive properties. Application of 18beta-GA did not abolish single cell oscillations. Pharmacologically uncoupled IO neurons continued to oscillate with a frequency and amplitude that were similar to those recorded in control conditions. However, these oscillations were no longer synchronized across a population of IO neurons. Our optical recordings did not detect any clusters of synchronous oscillatory activity in the presence of the blocker. These results indicate that gap junctions are not necessary for generating subthreshold oscillations, rather, they are required for clustering of coherent oscillatory activity in the IO. The findings support the view that oscillatory properties of single IO neurons endow the system with important reset dynamics, while gap junctions are mainly required for synchronized neuronal ensemble activity.  相似文献   

18.
The basal ganglia play a critical role in controlling seizures in animal models of idiopathic non-convulsive (absence) epilepsy. Inappropriate output from the substantia nigra pars reticulata (SNr) is known to exacerbate seizures, but the precise neuronal mechanisms underlying abnormal activity in SNr remain unclear. To test the hypothesis that cortical spike-wave oscillations, often considered indicative of absence seizures, propagate to the subthalamic nucleus, an important afferent of SNr, we simultaneously recorded local field potentials from the frontal cortex and subthalamic nucleus of freely moving rats. Spontaneous spike-wave oscillations in cortex (mean dominant frequency of 7.4 Hz) were associated with similar oscillations in the subthalamic nucleus (mean of 7.9 Hz). The power of oscillations at 5-9 Hz was significantly higher during spike-wave activity as compared with rest periods without this activity. Importantly, spike-wave oscillations in cortex and subthalamic nucleus were significantly coherent across a range of frequencies (3-40 Hz), and the dominant (7-8 Hz) oscillatory activity in the subthalamic nucleus typically followed that in cortex with a small time lag (mean of 2.7 ms). In conclusion, these data suggest that ensembles of subthalamic nucleus neurons are rapidly recruited into oscillations during cortical spike-wave activity, thus adding further weight to the importance of the subthalamic nucleus in absence epilepsy. An increase in synchronous oscillatory input from the subthalamic nucleus could thus partly underlie the expression of pathological activity in SNr that could, in turn, aggravate seizures. Finally, these findings also reiterate the importance of oscillations in these circuits in normal behaviour.  相似文献   

19.
1. Temporal properties of single- and multiple-unit responses were investigated in the inferior colliculus (IC) of the barbiturate-anesthetized cat. Approximately 95% of recording sites were located in the central nucleus of the inferior colliculus (ICC). Responses to contralateral stimulation with tone bursts and amplitude-modulated tones (100% sinusoidal modulation) were recorded. Five response parameters were determined for neurons at each location: 1) characteristic frequency (CF); 2) onset latency of responses to CF-tones 60 dB above threshold; 3) Q10 dB (CF divided by bandwidth of tuning curve 10 dB above threshold); 4) best modulation frequency for firing rate (rBMF or BMF; amplitude modulation frequency that elicited the highest firing rate); and 5) best modulation frequency for synchronization (sBMF; amplitude modulation frequency that elicited the highest degree of phase-locking to the modulation frequency). 2. Response characteristics for single units and multiple units corresponded closely. A BMF was obtained at almost all recording sites. For units with a similar CF, a range of BMFs was observed. The upper limit of BMF increased approximately proportional to CF/4 up to BMFs as high as 1 kHz. The lower limit of encountered BMFs for a given CF also increased slightly with CF. BMF ranges for single-unit and multiple-unit responses were similar. Twenty-three percent of the responses revealed rBMFs between 10 and 30 Hz, 51% between 30 and 100 Hz, 18% between 100 and 300 Hz, and 8% between 300 and 1000 Hz. 3. For single units with modulation transfer functions of bandpass characteristics, BMFs determined for firing rate and synchronization were similar (r2 = 0.95). 4. Onset latencies for responses to CF tones 60 dB above threshold varied between 4 and 120 ms. Ninety percent of the onset latencies were between 5 and 18 ms. A range of onset latencies was recorded for different neurons with any given CF. The onset response latency of a given unit or unit cluster was significantly correlated with the period of the BMF and the period of the CF (P less than 0.05). 5."Intrinsic oscillations" of short duration, i.e., regularly timed discharges of units in response to stimuli without a corresponding temporal structure, were frequently observed in the ICC. Oscillation intervals were commonly found to be integer multiples of 0.4 ms. Changes of stimulus frequency or intensity had only minor influences on these intrinsic oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
F Amzica  A Nu?ez  M Steriade 《Neuroscience》1992,51(2):285-294
Neurons in the perigeniculate sector of the reticular thalamic nuclear complex were recorded extra- and intracellularly under deep urethane anesthesia. They were identified by burst responses to optic chiasm stimulation and depolarizing spindle oscillations in response to internal capsule stimulation. Perigeniculate neurons displayed oscillations within the frequency range of electroencephalogram delta waves (1-4 Hz). One-third of extracellularly recorded neurons discharged rhythmic (2.5-4 Hz), high-frequency (150-200 Hz) spike bursts. This was similar to an intrinsic oscillation that was recently observed in dorsal lateral geniculate cells studied in vitro and in vivo. Other oscillating neurons displayed trains of single spikes (20-50 Hz) crowning rhythmic (2.5-4 Hz) depolarizing envelopes that were best expressed at the "resting" membrane potential (-60 to -65 mV). It is suggested that this oscillation reflects synaptic drives from dorsal lateral geniculate neurons. Changes in ambient room luminosity disrupted both types of delta rhythms. These data demonstrate for the first time that delta oscillations are present in the visual sector of the reticular thalamic nucleus. The results suggest that the two types of delta rhythmicity result from intrinsic and network properties of visual thalamic neurons and that perigeniculate cells may synchronize, through backward connections, the activity of dorsal lateral geniculate cells during deep stages of resting sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号