首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present ab initio calculations of the phase diagram of liquid CO2 and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid–liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid–liquid–solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO2 phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid–liquid transitions. Furthermore, the previously suggested phase separation of CO2 into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO2 does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.  相似文献   

2.
Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.  相似文献   

3.
Sodium, which has long been regarded as one of the simplest metals, displays a great deal of structural, optical, and electronic complexities under compression. We compressed pure Na in the body-centered cubic structure to 52 GPa and in the face-centered cubic structure from 64 to 97 GPa, and studied the plasmon excitations of both structures using the momentum-dependent inelastic X-ray scattering technique. The plasmon dispersion curves as a function of pressure were extrapolated to zero momentum with a quadratic approximation. As predicted by the simple free-electron model, the square of the zero-momentum plasmon energy increases linearly with densification of the body-centered cubic Na up to 1.5-fold. At further compressions and in face-centered cubic Na above 64 GPa, the linear relation curves progressively toward the density axis up to 3.7-fold densification at 97 GPa. Ab initio calculations indicate that the deviation is an expected behavior of Na remaining a simple metal.  相似文献   

4.
Being the lightest and the most abundant element in the universe, hydrogen is fascinating to physicists. In particular, the conditions of its metallization associated with a possible superconducting state at high temperature have been a matter of much debate in the scientific community, and progress in this field is strongly correlated with the advancements in theoretical methods and experimental techniques. Recently, the existence of hydrogen in a metallic state was reported experimentally at room temperature under a pressure of 260–270 GPa, but was shortly after that disputed in the light of more experiments, finding either a semimetal or a transition to an other phase. With the aim to reconcile the different interpretations proposed, we propose by combining several computational techniques, such as density functional theory and the GW approximation, that phase III at ambient temperature of hydrogen is the Cmca-12 phase, which becomes a semimetal at 260 GPa . From phonon calculations, we demonstrate it to be dynamically stable; calculated electron–phonon coupling is rather weak and therefore this phase is not expected to be a high-temperature superconductor.  相似文献   

5.
Slab melting versus slab dehydration in subduction-zone magmatism   总被引:3,自引:0,他引:3  
The second critical endpoint in the basalt-H2O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones.  相似文献   

6.
Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure–temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.  相似文献   

7.
Determining the thermochemical properties of hydrocarbons (HCs) at high pressure and temperature is a key step toward understanding carbon reservoirs and fluxes in the deep Earth. The stability of carbon-hydrogen systems at depths greater than a few thousand meters is poorly understood and the extent of abiogenic HCs in the Earth mantle remains controversial. We report ab initio molecular dynamics simulations and free energy calculations aimed at investigating the formation of higher HCs from dissociation of pure methane, and in the presence of carbon surfaces and transition metals, for pressures of 2 to 30 GPa and temperatures of 800 to 4,000 K. We show that for T≥2,000 K and P≥4 GPa HCs higher than methane are energetically favored. Our results indicate that higher HCs become more stable between 1,000 and 2,000 K and P≥4 GPa. The interaction of methane with a transition metal facilitates the formation of these HCs in a range of temperature where otherwise pure methane would be metastable. Our results provide a unified interpretation of several recent experiments and a detailed microscopic model of methane dissociation and polymerization at high pressure and temperature.  相似文献   

8.
The role of mantle ultrapotassic fluids in diamond formation   总被引:2,自引:0,他引:2  
Analysis of data on micro- and nano-inclusions in mantle-derived and metamorphic diamonds shows that, to a first approximation, diamond-forming medium can be considered as a specific ultrapotassic, carbonate/chloride/silicate/water fluid. In the present work, the processes and mechanisms of diamond crystallization were experimentally studied at 7.5 GPa, within the temperature range of 1,400-1,800 degrees C, with different compositions of melts and fluids in the KCl/K(2)CO(3)/H(2)O/C system. It has been established that, at constant pressure, temperature, and run duration, the mechanisms of diamond nucleation, degree of graphite-to-diamond transformation, and formation of metastable graphite are governed chiefly by the composition of the fluids and melts. The experimental data suggest that the evolution of the composition of deep-seated ultrapotassic fluids/melts is a crucial factor of diamond formation in mantle and ultrahigh-pressure metamorphic processes.  相似文献   

9.
Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.  相似文献   

10.
Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming an “H4” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.  相似文献   

11.
Please cite this paper as: Romagosa et al. (2011) Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non‐vaccinated pigs. Influenza and Other Respiratory Viruses. Background/objective  We evaluated the sensitivity of PCR on oral fluids in detecting influenza virus in vaccinated and non‐vaccinated pigs. Methods  Three‐week‐old influenza‐free pigs were divided into three groups: (i) control, non‐vaccinated, (ii) vaccinated with a commercial, heterologous vaccine, and (iii) vaccinated with an experimental, homologous vaccine. After vaccination, an influenza‐infected pig was placed in contact with each of the groups. Individual nasal swabs and pen oral fluids were collected daily. Viral RNA was tested for the presence of influenza by RRT‐PCR and virus isolation attempted from oral fluids. A pen was considered positive if at least one nasal swab was positive. Results  Based on nasal swab results, 43·8% of pens were detected positive but only 35% based on oral fluids. Overall sensitivity of oral fluids was 80%, and virus was isolated from 51% of RRT‐PCR‐positive oral fluids. The kappa coefficient for agreement (ĸ) between oral fluids and nasal swabs was 0·82. Among groups, ĸ was 1 (95% CI, 1–1), 0·74 (95% CI, 0·55–0·92), and 0·76 (95% CI, 0·5–1) for control, heterologous, and homologous‐vaccinated groups, respectively. There was less agreement when within pen prevalence was 10% or less. Probability of detecting influenza virus in oral fluids was 99% when within pen prevalence was higher than 18% and decreased to 69% when prevalence was 9%. Conclusions  Results indicated that pen‐based collection of oral fluids is a sensitive method to detect influenza even when within pen prevalence is low and when pigs have been vaccinated and highlight the potential use of oral fluids for influenza surveillance.  相似文献   

12.
New host for carbon in the deep Earth   总被引:1,自引:0,他引:1  
The global geochemical carbon cycle involves exchanges between the Earth's interior and the surface. Carbon is recycled into the mantle via subduction mainly as carbonates and is released to the atmosphere via volcanism mostly as CO(2). The stability of carbonates versus decarbonation and melting is therefore of great interest for understanding the global carbon cycle. For all these reasons, the thermodynamic properties and phase diagrams of these minerals are needed up to core mantle boundary conditions. However, the nature of C-bearing minerals at these conditions remains unclear. Here we show the existence of a new Mg-Fe carbon-bearing compound at depths greater than 1,800 km. Its structure, based on three-membered rings of corner-sharing (CO(4))(4-) tetrahedra, is in close agreement with predictions by first principles quantum calculations [Oganov AR, et al. (2008) Novel high-pressure structures of MgCO(3), CaCO(3) and CO(2) and their role in Earth's lower mantle. Earth Planet Sci Lett 273:38-47]. This high-pressure polymorph of carbonates concentrates a large amount of Fe((III)) as a result of intracrystalline reaction between Fe((II)) and (CO(3))(2-) groups schematically written as 4FeO + CO(2) → 2Fe(2)O(3) + C. This results in an assemblage of the new high-pressure phase, magnetite and nanodiamonds.  相似文献   

13.
Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 3O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.  相似文献   

14.
AIM: To observe the synergistic effects of hyperthermia in oxaliplatin-induced cytotoxicity in human colon adenocarcinoma Lovo cells.METHODS: The human colon adenocarcinoma cell line Lovo was obtained from Sun Yat-Sen University. Cells were sealed with parafilm and placed in a circulating water bath, and was maintained within 0.01  °C of the desired temperature (37  °C, 39  °C, 41  °C, 43  °C and 45  °C). Thermal therapy was given alone to the negative control group while oxaliplatin was administered to the treatment group at doses of 12.5 μg/mL and 50 μg/mL. Identification of morphological changes, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and Western blotting were used to investigate the effect of thermochemotherapy on human colon adenocarcinoma Lovo cells, including changes in the signal pathway related to apoptosis.RESULTS: A temperature-dependent inhibition of cell growth was observed after oxaliplatin exposure, while a synergistic interaction was detected preferentially with sequential combination. Thermochemotherapy changed the morphology of Lovo cells, increased the inhibition rate of the Lovo cells (P < 0.05) and enhanced cellular population in the G0/G1 phase (16.7% ± 4.8 % in phase S plus 3.7% ± 2.4 % in phase G2/M, P < 0.05). Thermochemotherapy increased apoptosis through upregulating p53, Bax and downregulating Bcl-2. Protein levels were elevated in p53, Bax/Bcl-2 in thermochemotherapy group as compared with the control group (P < 0.05).CONCLUSION: Thermochemotherapy may play an important role in apoptosis via the activation of p53, Bax and the repression of Bcl-2 in Lovo cells.  相似文献   

15.
Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO2), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO2 that is based on the ratio of Fe and FeO [called “ΔIW (ratio)” hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO2 + O2 = Fe2SiO4 to calculate absolute fO2 and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO2 in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO2 may evolve from high to low fO2 during Earth (and other differentiated bodies) accretion. Any modeling of core formation and metal-silicate equilibrium should take these effects into account.  相似文献   

16.
Silica is the most abundant oxide component in the Earth mantle by weight, and stishovite, the rutile-structured (P4(2)/mnm) high-pressure phase with silica in six coordination by oxygen, is one of the main constituents of the basaltic layer of subducting slabs. It may also be present as a free phase in the lower mantle and at the core-mantle boundary. Pure stishovite undergoes a displacive phase transition to the CaCl(2) structure (Pnnm) at approximately 55 GPa. Theory suggests that this transition is associated with softening of the shear modulus that could provide a significant seismic signature, but none has ever been observed in the Earth. However, stishovite in natural rocks is expected to contain up to 5 wt % Al(2)O(3) and possibly water. Here we report the acoustic velocities, densities, and Raman frequencies of aluminum- and hydrogen-bearing stishovite with a composition close to that expected in the Earth mantle at pressures up to 43.8(3) GPa [where (3) indicates an uncertainty of 0.3 GPa]. The post-stishovite phase transition occurs at 24.3(5) GPa (at 298 K), far lower than for pure silica at 50-60 GPa. Our results suggest that the rutile-CaCl(2) transition in natural stishovite (with 5 wt % Al(2)O(3)) should occur at approximately 30 GPa or approximately 1,000-km depth at mantle temperatures. The major changes in elastic properties across this transition could make it visible in seismic profiles and may be responsible for seismic reflectors observed at 1,000- to 1,400-km depth.  相似文献   

17.
There is great interest in the exploration of hydrogen-rich compounds upon strong compression where they can become superconductors. Stannane (SnH4) has been proposed to be a potential high-temperature superconductor under pressure, but its high-pressure crystal structures, fundamental for the understanding of superconductivity, remain unsolved. Using an ab initio evolutionary algorithm for crystal structure prediction, we propose the existence of two unique high-pressure metallic phases having space groups Ama2 and P63/mmc, which both contain hexagonal layers of Sn atoms and semimolecular (perhydride) H2 units. Enthalpy calculations reveal that the Ama2 and P63/mmc structures are stable at 96–180 GPa and above 180 GPa, respectively, while below 96 GPa SnH4 is unstable with respect to elemental decomposition. The application of the Allen-Dynes modified McMillan equation reveals high superconducting temperatures of 15–22 K for the Ama2 phase at 120 GPa and 52–62 K for the P63/mmc phase at 200 GPa.  相似文献   

18.
One fascinating high-pressure behavior of tetrahedral glasses and melts is the local coordination change with increasing pressure, which provides a structural basis for understanding numerous anomalies in their high-pressure properties. Because the coordination change is often not retained upon decompression, studies must be conducted in situ. Previous in situ studies have revealed that the short-range order of tetrahedrally structured glasses and melts changes above a threshold pressure and gradually transforms to an octahedral form with further pressure increase. Here, we report a thermal effect associated with the coordination change at given pressures and show distinct thermal behaviors of GeO(2) glass in tetrahedral, octahedral, and their intermediate forms. An unusual thermally induced densification, as large as 16%, was observed on a GeO(2) glass at a pressure of 5.5 gigapascal (GPa), based on in situ density and x-ray diffraction measurements at simultaneously high pressures and high temperatures. The large thermal densification at high pressure was found to be associated with the 4- to 6-fold coordination increase. Experiments at other pressures show that the tetrahedral GeO(2) glass displayed small thermal densification at 3.3 GPa arising from the relaxation of intermediate range structure, whereas the octahedral glass at 12.3 GPa did not display any detectable thermal effects.  相似文献   

19.
The correlations between organ damage and hourly ambulatory blood pressure (BP) have not been established. The patients were 1464 participants of the Japan Morning Surge‐Home Blood Pressure (J‐HOP) study participants who underwent ambulatory BP monitoring. The hourly systolic BP (SBP) at x o''clock was defined as the average of SBP values measured at times x − 30 minutes, x, and x + 30 minutes. The mean age was 64.8 ± 11.6 years. The percentage of male participants was 47.8%. The left ventricular mass index (LVMI) was significantly associated with SBP at 6 o''clock (r = 0.166, P < 0.001). The carotid intima‐media thickness was significantly associated with SBP at 5 o''clock (r = 0.196, P < 0.001). After adjustment for age, sex, smoking, hyperlipidemia, diabetes mellitus, antihypertensive drug use, clinic SBP, and 24‐hour ambulatory SBP, the correlations of the LVMI and hourly SBP at 6 o''clock remained significant (beta coefficient = 0.125, P < 0.01). In conclusion, morning ambulatory systolic BP especially at 5 and 6 o''clock was independently associated with organ damage.  相似文献   

20.
The metal complex [(tpy)(Mebim-py)RuII(S)]2+ (tpy = 2,2 : 6,2′′-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene; S = solvent) is a robust, reactive electrocatalyst toward both water oxidation to oxygen and carbon dioxide reduction to carbon monoxide. Here we describe its use as a single electrocatalyst for CO2 splitting, CO2 → CO + 1/2 O2, in a two-compartment electrochemical cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号