首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood-brain barrier (BBB) is compromised during progressive HIV-1 infection, but how this occurs is incompletely understood. We studied the integrity of tight junctions (TJs) of brain microvascular endothelial cells (BMVECs) in an in vitro BBB system and in human brain tissues with HIV-1 encephalitis (HIVE). A downregulation of TJ proteins, claudin-5 and occludin, paralleled monocyte migration into the brain during HIVE. Because small G proteins (such as Rho) can play a role in BMVEC TJ assembly, an artificial BBB system explored the relationship among TJs, Rho/Rho kinase (RhoK) activation, and transendothelial monocyte migration. Coculture of monocytes with endothelial cells led to Rho activation and phosphorylation of TJ proteins. Rho and RhoK inhibitors blocked migration of infected and uninfected monocytes. The RhoK inhibitor protected BBB integrity and reversed occludin/claudin-5 phosphorylation associated with monocyte migration. BMVEC transfection with a constitutively active mutant of RhoK led to dislocation of occludin from the membrane and loss of BMVEC cell contacts. When dominant-negative RhoK-transfected BMVECs were used in BBB constructs, monocyte migration was reduced by 84%. Thus, loss of TJ integrity was associated with Rho activation caused by monocyte brain migration, suggesting that Rho/RhoK activation in BMVECs could be an underlying cause of BBB impairment during HIVE.  相似文献   

2.
In the mammalian testis, the blood-testis barrier (BTB), unlike the blood-brain and blood-retina barriers, is composed of coexisting tight junctions (TJs) and adherens junctions (AJs). Yet these junctions must open (or disassemble) to accommodate the migration of preleptotene and leptotene spermatocytes across the BTB during spermatogenesis while maintaining its integrity. In this report, we show that the BTB utilizes a unique "engagement" and "disengagement" mechanism to permit the disruption of AJ that facilitates germ cell movement without compromising the BTB integrity. For instance, both TJ (e.g., occludin and JAM-1) and AJ (e.g., N-cadherin) integral membrane proteins were colocalized to the same site at the BTB. Although these TJ- and AJ-integral membrane proteins did not physically interact with each other, they were structurally linked by means of peripheral adaptors (e.g., ZO-1 and alpha- and gamma-catenins). As such, these proteins are structurally "engaged" under physiological conditions to reinforce the BTB. When rats were exposed to Adjudin to induce AJ restructuring that eventually led to germ cell loss from the epithelium, this structural interaction between occludin and N-cadherin by means of their adaptors became "disengaged" while their protein levels were significantly induced. In short, when the epithelium is under assault, such as by Adjudin or plausibly at the time of germ cell migration across the BTB during spermatogenesis, the TJ- and AJ-integral membrane proteins can be disengaged. Thus, this mechanism is used by the testis to facilitate AJ restructuring to accommodate germ cell migration while maintaining the BTB integrity.  相似文献   

3.
Regulation of blood-brain barrier permeability   总被引:5,自引:0,他引:5  
The blood-brain barrier minimizes the entry of molecules into brain tissue. This restriction arises by the presence of tight junctions (zonulae occludens) between adjacent endothelial cells and a relative paucity of pinocytotic vesicles within endothelium of cerebral arterioles, capillaries, and venules. Many types of stimuli can alter the permeability characteristics of the blood-brain barrier. Acute increases in arterial blood pressure beyond the autoregulatory capacity of cerebral blood vessels, application of hyperosmolar solutions, application of various inflammatory mediators known to be elevated during brain injury, and/or activation of blood-borne elements such as leukocytes can produce changes in permeability of the blood-brain barrier. The second messenger systems that account for increases in permeability of the blood-brain barrier during pathophysiologic conditions, however, remain poorly defined. This review will summarize studies that have examined factors that influence disruption of the blood-brain barrier, and will discuss the contribution of various cellular second messenger pathways in disruption of the blood-brain barrier during pathophysiologic conditions.  相似文献   

4.
The endothelial adherens junction (AJ) complex consisting of VE-cadherin and its associated catenins is a major determinant of fluid, solute, and plasma protein permeability of the vessel wall endothelial barrier. Impairment of endothelial barrier function contributes to cardiovascular diseases such as vascular inflammation and atherosclerosis. Adherens junctions disassemble in response to proinflammatory mediators, producing an increase in endothelial permeability; however, AJs also have the capacity to reassemble, leading to restoration of endothelial barrier function. Activation of Cdc42, a member of the Rho family of monomeric GTPases, is an essential signal regulating reannealing of AJs and reversal of the increase in endothelial permeability. The possibility of activating Cdc42 therapeutically represents a novel approach to prevent inflammatory diseases resulting from breakdown of the endothelial barrier. This review summarizes recent findings concerning the role of Cdc42 in restoring endothelial barrier integrity.  相似文献   

5.
BACKGROUND: Brain endothelial cells form the blood-brain barrier (BBB) that regulates solute and macromolecule flux in and out of the brain, leukocyte migration, and maintains the homeostasis of the central nervous system. BBB dysfunction is associated with disruption of tight junctions (TJ) in the brain endothelium. We propose that alcohol abuse may impair BBB permeability through TJ modification. METHODS: Primary cultured bovine brain microvascular endothelial cells (BBMEC) were treated with 50 mM ethanol (EtOH), and monolayer tightness was assessed by measurement of transendothelial electrical resistance (TEER). Changes in TEER were correlated with alterations in TJ protein distribution [occludin, zonula occludens-1 (ZO-1), claudin-5] using immunofluorescence (IF). Expression of myosin light chain (MLC) kinase (MLCK), ZO-1, claudin-5, and phosphorylated MLC, occludin and claudin-5 were determined by immunoprecipitation and Western blot. EtOH-induced changes in monocyte migration across in vitro BBB constructs were also examined. RESULTS: EtOH induced a decrease in TEER of BBMEC monolayers that was reversed by EtOH withdrawal. Treatment of BBMEC with EtOH or its metabolite, acetaldehyde, prior to monocyte application resulted in a 2-fold increase in monocyte migration across the BBB. IF demonstrated decrease in claudin-5 staining, occludin translocation from cell borders to cytoplasm and gap formation in EtOH-treated BBMEC monolayer. These changes paralleled significant increase in phosphorylation of MLC, occludin and claudin-5. EtOH-treated BBMEC showed reduction of total occludin and claudin-5 without changes in ZO-1 or MLC. TEER decrease, changes in occludin/claudin staining, increase in MLC, occludin and claudin-5 phosphorylation and enhanced monocyte migration across the BBB were all reversed by inhibition of MLCK. Inhibition of EtOH metabolism in BBMEC also reversed these events. CONCLUSION: These results suggest that EtOH activates MLCK leading to phosphorylation of MLC, occludin and claudin-5. Cytoskeletal alterations (MLC) and TJ changes (occludin and claudin-5 phosphorylation) result in BBB impairment (decrease in TEER). TJ compromise is associated with increased monocyte migration across the BBB.  相似文献   

6.
Background: Tight junctions form a continuous belt‐like structure between cells and act to regulate paracellular signaling. Protein kinase C (PKC) has been shown to regulate tight junction assembly and disassembly and is activated by alcohol. Previous research has shown that alcohol increases the permeability of tight junctions in lung alveolar cells. However, little is known about alcohol’s effect on tight junctions in epithelium of the conducting airways. We hypothesized that long‐term alcohol exposure reduces zonula occluden‐1 (ZO‐1) and claudin‐1 localization at the cell membrane and increases permeability through a PKC‐dependent mechanism. Methods: To test this hypothesis, we exposed normal human bronchial epithelial (NHBE) cells, cells from a human bronchial epithelial transformed cell line (Beas‐2B), and Beas‐2B expressing a PKCα dominant negative (DN) to alcohol (20, 50, and 100 mM) for up to 48 hours. Immunofluorescence was used to assess changes in ZO‐1, claudin‐1, claudin‐5, and claudin‐7 localization. Electric cell–substrate impedance sensing was used to measure the permeability of tight junctions between monolayers of NHBE, Beas‐2B, and DN cells. Results: Alcohol increased tight junction permeability in a concentration‐dependent manner and decreased ZO‐1, claudin‐1, claudin‐5, and claudin‐7 localization at the cell membrane. To determine a possible signaling mechanism, we measured the activity of PKC isoforms (alpha, delta, epsilon, and zeta). PKCα activity significantly increased in Beas‐2B cells from 1 to 6 hours of 100 mM alcohol exposure, while PKCζ activity significantly decreased at 1 hour and increased at 3 hours. Inhibiting PKCα with Gö‐6976 prevented the alcohol‐induced protein changes in both ZO‐1 and claudin‐1 at the cell membrane. PKCα DN Beas‐2B cells were resistant to alcohol‐induced protein alterations. Conclusions: These results suggest that alcohol disrupts ZO‐1, claudin‐1, claudin‐5, and claudin‐7 through the activation of PKCα, leading to an alcohol‐induced “leakiness” in bronchial epithelial cells. Such alcohol‐induced airway‐leak state likely contributes to the impaired airway host defenses associated with acute and chronic alcohol ingestion.  相似文献   

7.
Summary Decreased sodium permeability across the blood-brain barrier occurs in streptozotocin-treated rats after 2 weeks of diabetes. To establish whether this is a phenomenon specific for cations, the blood-brain barrier permeability for sodium, potassium and calcium was studied with an arterial integral uptake technique. Experiments were performed in control rats and, after two weeks after diabetes induction, in untreated streptozotocin-diabetic rats and in insulin-treated streptozotocin rats. In untreated diabetes, the neocortical blood-brain barrier permeability for sodium decreased by 35% (5.2±1.7 vs 3.4±1.1 10–5cm3·s–1·g–1) and potassium permeability by 39% (19.8±5.7 vs 12.1±3.9 10–5·cm3·s–1· g–1), whereas no differences in calcium permeability occurred. Insulin treatment was associated with an increase in the blood-brain barrier permeability to sodium (4.8±1.0 10–5·cm3·s–1·g–1) as compared to untreated diabetes (3.4±1.1 10–5·cm3·s–1·g–1). It is concluded that the observed changes in sodium and potassium permeability cannot be caused by electrostatic membrane changes. More specific abnormalities of the transport of sodium and potassium across the blood-brain barrier are likely to occur; disturbances in the sodium-potassium-pump activity could account for such alterations.  相似文献   

8.
Vascular permeability in ocular disease and the role of tight junctions   总被引:2,自引:0,他引:2  
Vascular permeability is closely linked with angiogenesis in a number of pathologies. In the retina, the normally well-developed blood-retinal barrier is altered in a host of eye diseases preceding or commensurate with angiogenesis. This review examines the literature regarding the tight junction complex that establishes the blood-retinal barrier focusing on the transmembrane proteins occludin and the claudin family and the membrane associated protein zonula occludens. The changes observed in these proteins associated with vascular and epithelial permeability is discussed. Finally, novel literature addressing the link between the tight junction complex and angiogenesis is considered.  相似文献   

9.
In species with noninvasive implantation by conceptus trophectoderm, fetal/maternal communications occur across the endometrial epithelia. The present studies identified changes in junctional complexes in the ovine endometrium that regulate paracellular trafficking of water, ions, and other molecules, and the secretory capacity of the uterine epithelia. Distinct temporal and spatial alterations in occludin, tight junction protein 2, and claudin 1-4 proteins were observed in the endometrium of cyclic and early pregnant ewes. Dynamic changes in tight junction formation were characterized by an abundance of tight junction proteins on d 10 of the estrous cycle and pregnancy that substantially decreased by d 12. Early progesterone administration advanced conceptus development on d 9 and 12 that was associated with loss of tight-junction-associated proteins. Pregnancy increased tight-junction-associated proteins between d 14-16. Cadherin 1 and beta-catenin, which form adherens junctions, were abundant in the endometrial glands, but decreased after d 10 of pregnancy in the luminal epithelium and then increased by d 16 with the onset of implantation. Results support the ideas that progesterone elicits transient decreases in tight and adherens junctions in the endometrial luminal epithelium between d 10-12 that increases selective serum and tissue fluid transudation to enhance blastocyst elongation, which is subsequently followed by an increase in tight and adherens junctions between d 14-16 that may be required for attachment and adherence of the trophectoderm for implantation. The continuous presence of tight and adherens junctions in the uterine glands would allow for vectorial secretion of trophic substances required for conceptus elongation and survival.  相似文献   

10.
We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.  相似文献   

11.
The tight junctions are narrow belts that circumferentially surround the upper part of the lateral surfaces of the adjacent epithelial cells to create fusion points or "kisses". They are involved in maintaining the cellular polarity and in the establishment of compositionally distinct fluid compartments in the body. Tight junctions are formed by many specific proteins and are connected with the cytoskeleton. In contrast to what might be expected, the intestinal tight junctions are highly dynamic areas and their permeability can change in response to both external and intracellular stimuli. In fact, the tight junctions play an important role in the regulation of the passive transepithelial movement of molecules. A number of signalling molecules have been implicated in the regulation of tight junction function, including Ca++, protein kinase C, G proteins, phospholipase A2 and C. In many intestinal and systemic diseases, changes in intestinal permeability are related to alteration of tight junctions as an expression of intestinal barrier damage. Moreover, permeability of the tight junctions can be modified by bacterial toxins, cytokines, hormones and drugs. A better understanding of tight junction structure, biogenesis and regulation mechanisms should throw further light on the intestinal barrier functions and suggest innovative therapeutic strategies.  相似文献   

12.
Whether the increased capillary permeability characteristic of diabetes extends to the blood-brain barrier is presently unclear. We have examined in streptozotocin-diabetic rats the permeability of the blood-brain barrier at the level of 12 discrete brain regions employing 3 intravenous tracers of different molecular weight: sucrose, insulin and horseradish peroxidase. In animals killed 5 min after tracer injection both the sucrose and the inulin spaces were similar to controls. In order to assess whether more prolonged circulation of tracers would uncover leakage, we studied brain spaces at longer intervals after tracer injections. When inulin was allowed to circulate for 15 min prior to killing, animals with 4 weeks of diabetes (but not 2 weeks) exhibited larger inulin spaces at the level of the medio-basal hypothalamus (p less than 0.01), medio-dorsal hypothalamus (p less than 0.05) and periaqueductal gray (p less than 0.01). Horseradish peroxidase, even after 75 min of perfusion, remained confined in both diabetic and control animals to central nervous system areas devoid of blood-brain barrier. Thus, after a relatively short duration of diabetes the blood-brain barrier manifests an increased permeability. It is subtle, limited to some brain regions and selective for low molecular weight tracers.  相似文献   

13.
The influence of diabetes on brain glutamate (GLU) uptake was studied in insulinopenic (streptozotocin [STZ]) and insulin-resistant (diet-induced obesity [DIO]) rat models of diabetes. In the STZ study, adult male Sprague-Dawley rats were treated with STZ (65 mg/kg intravenously) or vehicle and studied 3 weeks later. The STZ rats had elevated plasma levels of glucose, ketone bodies, and branched-chain amino acids; brain uptake of GLU was very low in both STZ and control rats, examined under conditions of normal and greatly elevated (by intravenous infusion) plasma GLU concentrations. In the DIO study, rats ingested a palatable, high-energy diet for 2 weeks and were then divided into weight tertiles: rats in the heaviest tertile were designated DIO; rats in the lightest tertile, diet-resistant (DR); and rats in the intermediate tertile, controls. The DIO and DR rats continued to consume the high-energy diet for 4 more weeks, whereas the control rats were switched to standard rat chow. All rats were studied at 6 weeks (subgroups were examined under conditions of normal or elevated plasma GLU concentrations). The DIO rats ate more food and were heavier than the DR or control rats and had higher plasma leptin levels and insulin-glucose ratios. In all diet groups, the blood-brain barrier showed very low GLU penetration and was unaffected by plasma GLU concentration. Brain GLU uptake also did not differ among the diet groups. Together, the results indicate that the blood-brain barrier remains intact to the penetration of GLU in 2 models of diabetes under the conditions examined.  相似文献   

14.
肠黏膜细胞的紧密连接是构成肠黏膜屏障的重要结构基础,在调节肠黏膜通透性中发挥着重要的作用.其结构的破坏,可导致肠壁通透性增高,引起细菌移位、全身炎症反应及多器官功能受损.本文就肠黏膜紧密连接的结构和功能、与通透性的影响因素及改善措施进行了综述.  相似文献   

15.
Structure of tight junctions in epithelia with different permeability.   总被引:16,自引:1,他引:15       下载免费PDF全文
Freeze-fracture studies have shown a network of intramembrane fibrils in the tight junctions of epithelia. A direct correlation between the number of fibrils and junctional permeability has been suggested by previous studies. However, we have made two groups of observations showing that junctional permeability is not univocally related to the complexity of the network revealed by freeze-fracture. (i) The tight junctions of the rabbit ileum mucosa are permeable to lanthanum, although they have a complex network of fibrils resembling the junctions of toad urinary bladder, which are impermeable to lanthanum. (ii) The tight junctions of the toad urinary bladder are normally of low permeability; however, when the luminal solution is made hypertonic with lysine, junctional permeability markedly increases and lanthanum permeates through the tight junctions. In freeze-fracture replicas, no differences between the fibrils of control and lysine-treated bladders were found. Our results indicate that junctional permeability is controlled not only by the complexity of the fibrilar network, but that some features of the junctions or the fibrils themselves, not yet revealed by electron microscopy, play a central role in regulating epithelial permeability.  相似文献   

16.
Iqbal M  Gibb W  Matthews SG 《Endocrinology》2011,152(3):1067-1079
The early fetal brain is susceptible to teratogens in the maternal circulation, because brain microvessel expression of drug efflux transporter, P-glycoprotein (P-gp), is very low. However, there is a dramatic up-regulation of brain microvessel P-gp in late gestation. This study investigated the role of cortisol and dexamethasone in this up-regulation of fetal brain microvessel P-gp expression. Primary brain endothelial cell (BEC) cultures derived from gestational d (GD)40, GD50, GD65 (term, ~68 d) and postnatal d 14 male guinea pigs were treated with varying doses (10(-8) to 10(-5) m) of cortisol, dexamethasone, and aldosterone. After treatment, P-gp function was assessed using calcein-acetoxymethyl ester (P-gp substrate; 1 μm for 1 h) and measuring BEC accumulation of calcein. Corticosteroid treatment of BECs derived from postnatal d 14 resulted in increased P-gp activity. BECs derived from GD65 (near term) responded similarly, but these cells were extremely sensitive to the effects of mineralocorticoid receptor agonists (cortisol and aldosterone). BECs derived from GD50 displayed dose-dependent increases in P-gp function with dexamethasone (P < 0.05) and a trend towards increased function with cortisol. Cells derived from GD40 were unresponsive to all treatments. In conclusion, P-gp function in BECs is more responsive to glucocorticoids (GCs) in late gestation. Therefore, the late gestational surge in fetal plasma GCs, which parallels the increase in brain microvessel P-gp expression, may contribute to this P-gp up-regulation. Further, synthetic GCs (administered to pregnant women at risk of preterm delivery) may increase the protective capacity of the developing fetal blood-brain barrier, depending on the timing of GC exposure.  相似文献   

17.
The blood-brain barrier (BBB) serves as a critical regulator of brain homeostasis. Following hypoxia (i.e. 6% oxygen/1 h) and reoxygenation (H/R), the BBB tight junctional complex is disrupted, resulting in increased BBB permeability and the development of vasogenic brain edema. In this study, we examined the effect of H/R on the in vivo rat BBB over a 36 h time course in conjunction with paracellular permeability, gray matter edema, and systemic inflammatory activity. A biphasic increase was observed in the brain uptake of (14)C-sucrose, a paracellular permeability marker; with the first increase at the 10 min reoxygenation time point, and the second increase at the 6-18 h time points. Increased brain water weight gain (edema) also showed a biphasic response with the first increase at the 10 min-1 h reoxygenation time points; and the second increase at only the 24 h time point. Analysis of serum derived cytokines (IL-1beta, TNFalpha, IL-6, IL-10, and IFNgamma) demonstrated that only IL-1beta and IL-6 were at detectable levels, but these levels were similar to controls. White blood cell counts showed significant decreases in lymphocytes (10 min-3 h), increases in monocytes (10 min-3 h and 12 h), and increases in polymorphonuclear cells (1 h and 3 h). We have shown that H/R elicits a biphasic increase in paracellular permeability and edema, which parallel to post-stroke sequelae, despite the lack of occlusion or complete depletion of oxygen.  相似文献   

18.
The role of changes in blood-brain barrier permeability in the pathogenesis of hepatic encephalopathy remains uncertain. To test the hypothesis that brain microvessel permeability is nonselectively increased in hepatic encephalopathy we measured the blood-brain barrier permeability-surface area product in rats with acute liver failure induced by intraperitoneal injection of galactosamine. The permeability-surface area products to the diffusion-limited tracers, sucrose and methylaminoisobutyric acid, were determined as a measure of blood-brain barrier permeability. Animals were examined 24, 36 and 42 hr after injection, at times when they were stuporous, but not comatose. No significant elevations of the permeability-surface area products for either compound were detected in clinically affected experimental animals when compared to controls. Our results indicate there is no generalized increase in brain vascular permeability during hepatic insufficiency in precomatose animals.  相似文献   

19.
肠道内数量庞大的菌群对宿主的生理病理功能有着不可忽视的影响.研究显示肠道菌群能够通过合成和释放一些重要的神经递质及调节因子来影响中枢神经系统的功能,肠道菌群的紊乱与血脑屏障完整性降低有关.肠道菌群的稳态在预防与治疗神经退行性疾病中有重要意义.本文拟综述血脑屏障完整性与菌-肠-脑轴相关性的最新进展,为从肠道出发治疗神经系统疾病提供新的方向.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号