首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Engineering three-dimensional pulmonary tissue constructs   总被引:2,自引:0,他引:2  
In this paper, we report on engineering 3-D pulmonary tissue constructs in vitro. Primary isolates of murine embryonic day 18 fetal pulmonary cells (FPC) were comprised of a mixed population of epithelial, mesenchymal, and endothelial cells as assessed by immunohistochemistry and RT-PCR of 2-D cultures. The alveolar type II (AE2) cell phenotype in 2-D and 3-D cultures was confirmed by detection of SpC gene expression and presence of the gene product prosurfactant protein C. Three-dimensional constructs of FPC were generated utilizing Matrigel hydrogel and synthetic polymer scaffolds of poly-lactic-co-glycolic acid (PLGA) and poly-L-lactic-acid (PLLA) fabricated into porous foams and nanofibrous matrices, respectively. Three-dimensional Matrigel constructs contained alveolar forming units (AFU) comprised of cells displaying AE2 cellular ultrastructure while expressing the SpC gene and gene product. The addition of tissue-specific growth factors induced formation of branching, sacculated epithelial structures reminiscent of the distal lung architecture. Importantly, 3-D culture was necessary for inducing expression of the morphogenesis-associated distal epithelial gene fibroblast growth factor receptor 2 (FGFr2). PLGA foams and PLLA nanofiber scaffolds facilitated ingrowth of FPC, as evidenced by histology. However, these matrices did not support the survival of distal lung epithelial cells, despite the presence of tissue-specific growth factors. Our results may provide the first step on the long road toward engineering distal pulmonary tissue for augmenting and/or replacing dysfunctional native lung in diseases, such as neonatal pulmonary hypoplasia.  相似文献   

2.
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.  相似文献   

3.
Successful bone tissue culture in a large implant is still a challenge. We have previously developed a porous hollow membrane sheet (HMSh) for tissue engineering applications (Afra Hadjizadeh and Davod Mohebbi-Kalhori, J Biomed. Mater. Res. Part A [2]). This study aims to investigate culture conditions and nutrient supply in a bioreactor made of HMSh. For this purpose, hydrodynamic and mass transport behavior in the newly proposed hollow membrane sheet bioreactor including a lumen region and porous membrane (scaffold) for supporting and feeding cells with a grooved section for accommodating gel-cell matrix was numerically studied. A finite element method was used for solving the governing equations in both homogenous and porous media. Furthermore, the cell resistance and waste production have been included in a 3D mathematical model. The influences of different bioreactor design parameters and the scaffold properties which determine the HMSh bioreactor performance and various operating conditions were discussed in detail. The obtained results illustrated that the novel scaffold can be employed in the large-scale applications in bone tissue engineering.  相似文献   

4.
Evaluation of plasma resistant hollow fiber membranes for artificial lungs   总被引:6,自引:0,他引:6  
Hollow fiber membranes (HFMs) used in artificial lungs (oxygenators) undergo plasma leakage (or wetting) in which blood plasma slowly fills the pores of the fiber wall, plasma leaks into gas pathways, and overall gas exchange decreases. To overcome this problem plasma resistant fibers are being developed that are skinned asymmetric or composite symmetric versions of microporous oxygenator fibers. This report evaluates several candidate plasma resistant HFMs in terms of their gas permeance and plasma resistance as measured in a surfactant wet out test. Five candidate fibers were compared with each other and with a control fiber. CO2 and O2 gas permeance (in ml/s/cm2/cm Hg) in the plasma resistant fibers ranged from 3.15E-04 to 1.71E-03 and 3.40E-04 to 1.08E-03, respectively, compared with 1.62E-02 and 1.77E-02 for the control fiber. Maximum dye bleed through for the plasma resistant fibers in the forced wet out test were significantly less than for the control fiber. CO2 gas permeance of a plasma resistant fiber imposes the greatest constraint upon artificial lung design for sufficient gas exchange. However, our results suggest sufficient plasma resistance can be achieved using special skinned and composite HFMs while maintaining an acceptable CO2 gas permeance for a broad range of artificial lung applications.  相似文献   

5.
Hollow fiber membranes are enjoying widespread use as barrier materials in many implanted applications. In order to predict in vivo device behavior, it is important to understand and quantify the changes to the membrane and to the tissue immediately surrounding it that occur following implantation. We have considered a range of commercially available hollow fiber membranes for their suitability as candidates for subcutaneously implanted applications. Through analysis of excised tissue sections by light microscopy, membranes were screened at 3, 6, and 12 weeks post-implantation for the ability to maintain integrity, foreign-body reaction, and thickness of the external fibrotic capsule layer. The polysulfone microfiltration membranes and cellulose diacetate membranes investigated were found to be unsuitable owing to extensive degradation. All membranes exhibited typical foreign body reaction with fibrotic capsule formation. The thinnest capsules were observed on the regenerated cellulose microdialysis membranes and the polysulfone ultrafiltration membranes. Extensive cellular penetration into the membrane matrix of the latter was observed, but did not appear to affect the foreign body reaction. A heat-sealing method was also considered for thermoplastic membranes and found to effectively prevent cellular penetration into the lumen of the hollow fiber for the duration of the 12-week implantation.  相似文献   

6.
Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through narrow ducts, fibers with a shell-core configuration can be extruded. Hollow fibers are then obtained by selective dissolution of the inner core polymer. The hollow cavity diameter and the shell thickness can be controlled by varying the polymers in the blend, the blend composition, and the extrusion nozzle diameter. Simultaneous with extrusion, the extrudates are organized into 3D matrices with different architectures and custom-made shapes by 3D fiber deposition, a rapid prototyping tool which has recently been applied for the production of scaffolds for tissue engineering purposes. Applications in tissue engineering and controlled drug delivery of these constructs are presented and discussed.  相似文献   

7.
Growth of human cells on polyethersulfone (PES) hollow fiber membranes   总被引:4,自引:0,他引:4  
A novel material of porous hollow fibers made of polyethersulfone (PES) was examined for its ability to support the growth of human cells. This material was made in the absence of solvents and had pore diameters smaller than 100 microm. Human cell lines of different tissue and cell types (endothelial, epithelial, fibroblast, glial, keratinocyte, osteoblast) were investigated for adherence, growth, spread and survival on PES by confocal laser microscopy after staining of the cells with Calcein-AM. Endothelial cell attachment and growth required pre-coating PES with either fibronectin or gelatin. The other cell types exhibited little difference in growth, spread or survival on coated or uncoated PES. All the cells readily adhered and spread on the outer, inner and cut surfaces of PES. With time confluent monolayers of cells covered the available surface area of PES and in some cases cells grew as multilayers. Many of the cells were able to survive on the PES for up to 7 weeks and in some cases growth was so extensive that the underlying PES was no longer visible. Scanning electron microscope observations of cells on the materials correlated with the confocal morphometric data. Thus, PES is a substrate for the growth of many different types of human cells and may be a useful scaffolding material for tissue engineering.  相似文献   

8.
In order to improve the guidance potential of a nerve entubulation bridging device, highly aligned textures were formed on the inner surface of semipermeable hollow fiber membranes (HFMs) during the wet phase inversion process. By precisely controlling the fabrication parameters, such as polymer solution flow rate, coagulant solution flow rate, and the air-gap distance, also called drop height, different-sized aligned grooves can be fabricated on the inner surface of HFMs. Preliminary studies using in vitro dorsal root ganglion (DRG) regeneration assay showed that both the alignment and outgrowth rate of regenerating axons increased significantly on HFMs with aligned textures compared to those on HFMs with a smooth inner surface. Studies in progress are evaluating axonal outgrowth and regeneration using in vivo sciatic-nerve and spinal-cord-injury models.  相似文献   

9.
Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive the extrusion and that their subsequent viability was not different from that of unprinted cells. The applied extrusion conditions did not affect cell survival, and BMSCs could subsequently differentiate along the osteoblast lineage. Furthermore, we were able to combine two distinct cell populations within a single scaffold by exchanging the printing syringe during deposition, indicating that this 3D fiber deposition system is suited for the development of bone grafts containing multiple cell types.  相似文献   

10.
Ye SH  Watanabe J  Takai M  Iwasaki Y  Ishihara K 《Biomaterials》2005,26(24):5032-5041
In this study, we prepared cellulose acetate (CA) hollow fiber membranes (HFMs) modified with poly (2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate)(PMB30 and PMB80) by the dry-jet wet spinning process. The physical and chemical structures of the HFMs were controlled in order to design highly functional HFMs that had suitable performance to each targeting HFM device used in a total hemopurification system. The CA HFMs modified with the MPC polymer, such as CA/PMB30, CA/PMB80, and CA/PMB30-80 HFMs, were successfully prepared by controlling the spinning conditions. The modified HFMs showed an improved performance in solute and water permeability, due to the modification by the hydrophilic MPC polymers. The CA/PMB30 and CA/PMB80 showed a high potential in an application for a high performance hemocompatible plasmapheresis and hemofilter device. Furthermore, CA/PMB30-80 HFM, modified asymmetrically with PMB30 and PMB80, showed a potential for application in an advanced total hemopurification system as a highly functional scaffold for a biohybrid renal tubule, or a liver assist bioreactor device, because of their enhanced permeability, hemocompatibility, and cytocompatibility.  相似文献   

11.
Commercially available hollow fiber membranes (HFMs) made from synthetic polymers, including cellulose acetate (CA) HFMs, used as hemopurification membranes, need to improve in hemocompatibility, by suppressing protein adsorption and clot formation. In this study, CA HFMs blended with 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer (PMB30 composed of MPC and n-butyl methacrylate (BMA)) were prepared by a dry-jet wet spinning process. Their performances were evaluated by characterizing their properties such as structure, permeability and protein adsorption. CA/PMB30-blend HFMs showed structure changes such as increase of porosity, development of large pores and decreasing of the thickness of the active layer. And the structure and permeability of CA/PMB30-blend HFMs were controllable by changing preparation conditions. Also, the CA/PMB30-blend HFMs had good permeability, low protein adsorption and low fouling property during the permeability experiment in comparison with CA HFMs, because the hydrophilic and hemocompatible MPC copolymer (PMB30) existed on the surface of the HFM.  相似文献   

12.
The extended interaction of blood with certain materials like hemodialysis membranes results in the activation of cellular element as well as inflammatory response. This results in hypersensitive reactions and increased reactive oxygen species, which occurs during or immediately after dialysis. Although polysulfone (Psf) hollow fiber has been commercially used for acute and chronic hemodialysis, its biocompatibility remains a major concern. To overcome this, we have successfully made composite Psf hollow fiber membrane consisting of hydrophilic/hydrophobic micro-domains of Psf and Vitamin E TPGS (TPGS). These were prepared by dry-wet spinning using 5, 10, 15, 20 wt% TPGS as an additive in dope solution. TPGS was successfully entrapped in Psf hollow fiber, as confirmed by ATR-FTIR and TGA. The selective skin was formed at inner side of hollow fibers, as confirmed by SEM study. In vitro biocompatibility and performance of the Psf/TPGS composite membranes were examined, with cytotoxicity, ROS generation, hemolysis, platelet adhesion, contact and complement activation, protein adsorption, ultrafiltration coefficient, solute rejection and urea clearance. We show that antioxidative composite Psf exhibits enhanced biocompatibility, and the membranes show high flux and high urea clearance, about two orders of magnitude better than commercial hemodialysis membranes on a unit area basis.  相似文献   

13.
A hollow fiber-in-fiber-based bioreactor system was tested for the applicability to host kidney epithelial cells as a model system for a bioartificial kidney. Hollow fibers were prepared from polyacrylonitrile (PAN), polysulfone-polyvinylpyrollidinone (PVP) blend (PSU) and poly(acrylonitrile-N-vinylpyrollidinone) copolymer P(AN-NVP). Hollow fibers with smaller and larger diameters were prepared so that the smaller fitted into the larger, with a distance of 50-100 microm in between. The following material combinations as outer and inner fiber were applied: PAN-PAN; PSU-PSU, PSU-P(AN-NVP). Madin-Darby kidney epithelial cells (MDCK) were seeded in the interfiber space and cultured for a period up to 14 days. Light, scanning, and transmission electron microscopy were used to follow the adhesion and growth of cells, and to characterize their morphology. As a result, we found that MDCK cells were able to grow in the interfiber space in mono- and multilayers without signs of systemic degeneration. Comparison of the different materials showed that PAN and P(AN-NVP) provided the best growth conditions, indicated by a tight attachment of cells on hollow fiber membrane, and subsequent proliferation and development of structural elements of normal epithelia, such as tight junctions and microvilli. In conclusion, the fiber-in-fiber design seems to be an interesting system for the construction of a bioartificial kidney.  相似文献   

14.
The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds.  相似文献   

15.
Cellular activity at the center of tissue-engineered constructs in static culture is typically decreased relative to the construct periphery because of transport limitations. We have designed a tissue culture system that perfuses culture medium through three-dimensional (3D) porous cellular constructs to improve nutrient delivery and waste removal within the constructs. This study examined the effects of medium perfusion rate on cell viability, proliferation, and gene expression within cell-seeded 3D bone scaffolds. Human trabecular bone scaffolds were seeded with MC3T3-E1 osteoblast-like cells and perfused for 1 week at flow rates of 0.01, 0.1, 0.2, and 1.0 mL/min. Confocal microscopy after 1 week of culture indicated that a flow rate of 1.0 mL/min resulted in substantial cell death throughout the constructs whereas lowering the flow rate led to an increasing proportion of viable cells, particularly at the center of the constructs. DNA analysis showed increases in cell proliferation at a flow rate of 0.01 mL/min relative to 0.2 mL/min and static controls. Conversely, mRNA expressions of Runx2, osteocalcin, and alkaline phosphatase were upregulated at 0.2 mL/min compared with lower flow rates as quantified by real-time RT-PCR. These data suggest that medium perfusion may benefit the development of 3-D tissues in vitro by enhancing transport of nutrients and waste within the constructs and providing flow-mediated mechanical stimuli.  相似文献   

16.
Stem cells for tissue engineering of myocardial constructs   总被引:1,自引:0,他引:1  
Cardiovascular diseases are the leading cause of morbidity and mortality. Tissue engineering offers new option in the myocardial repair techniques. The cellular component of this regenerative approach will play a key role in bringing these tissue engineered constructs from the laboratory bench to the clinical bedside. However, the ideal source of cells still remains unclear and may differ depending upon the application. Current research for many applications is focused on the use of stem cells. The combination of stem cell technology and tissue engineering has been investigated and offers promising avenues for myocardial tissue regeneration, and this shows great promise in future reconstructive surgery. We explore the basic concepts and methods for myocardial tissue reconstruction and emphasize the progress made and remaining challenges of stem cells in myocardial tissue engineering.  相似文献   

17.
Open-cell hollow fibers made of polyethersulfone (PES) manufactured in the absence of solvents with pore diameters smaller than 100 microm were examined for vascularization by human endothelial cells. The goal of this study was to determine whether the 3-D porous character of the PES surface affected human endothelial cell morphology and functions. Freshly isolated human endothelial cells from the skin (HDMEC), from the lung (HPMEC) and from umbilical cords (HUVEC) and two human endothelial cell lines, HPMEC-ST1.6R and ISO-HAS.c1 were added to PES fibers and cell adherence and growth was followed by confocal laser scanning microscopy. Prior coating of PES with gelatin or fibronectin was necessary for adhesion and spreading of cells over the uneven porous surface with time. Confluent cells exhibited typical strong PECAM-1 expression at cell-cell borders. Little expression of the activation markers E-selectin, ICAM-1, and VCAM-1 was observed by RT-PCR of endothelial cells growing on PES. However, after stimulation for 4h by LPS, activation of these markers was observed and it was shown by immunofluorescent staining that induction occurred in most of the cells, thus confirming an intact functionality. Finally, cells growing as a monolayer on PES migrated to form microvessel-like structures when placed under conditions that stimulated angiogenesis. Thus, human endothelial cells grown on fibronectin-coated PES fibers retain important endothelial-cell specific morphological and functional properties and PES may serve as a useful biomaterial in tissue engineering and biotechnology applications.  相似文献   

18.
目的 目前,用于血液透析的膜材料主要有聚砜和聚醚砜,在去除β2-微球蛋白及生物相容性方面尚存在缺陷.聚偏氟乙烯(PVDF)在血液透析方面尚无应用,本研究对PVDF膜材料进行了力学性能及血液透析性能的评价.方法 采用干-湿相转化法制备PVDF中空纤维膜;采用离心浇铸法将中空纤维膜封装成血液透析器,用实验室配制的模拟液代替...  相似文献   

19.
Objective Currently applied membrane materials for hemodialysis are mainly polysulfone and polyethers. However, defects still remain in the removal of β2-MG and biocompatibility. Polyvinylidene fluoride (PVDF) has not been put in use in hemodialysis. This study focused on the evaluation of mechanics performance and the dialysis performance of PVDF membrane material. Methods PVDF hollow fiber membranes were spun by changing the membrane forming conditions. The membranes were sealed to dialyzers by centrifugal moulding method. The simulation solution, instead of patient blood, was used to evaluate the dialysis performance of PVDF hollow fiber membrane dialyzers. Results The tensile failure strength of PVDF membrane was about 20 cN. The tensile elongation of PVDF membrane was about 200%. The clearance rates of the dialyzers prepared with the fiber whose wall thickness was 30μ m to urea and lysozyme were 90% and 75%, separately,while the rejection to BAS reached 90% above. With the mass content of (polyethylene glycol, PEG) was 19%,the rejection rate of bovine serum was 91%, which was higher than that with the PEG mass content of 22%. When the flow velocity of dialysis fluid was increased, the clearance rate of urea and lysozyme was improved, but the rejection of BAS was not much affected. Conclusion The results show that the mechanics performance can satisfy the demand of dialysis. The clearance rate of urea and lysozyme has greatly improved. The retention of bovine serum albumin by using PVDF dialyzers is ideal. The PVDF can be exploited as a new membrane material.  相似文献   

20.
Analysis of the formation and organization of new connective tissue formed in tissue-engineered constructs is a major requirement for tissue bioreactor technology. We have analyzed early-stage responses in collagen lattices, using elastic scattering spectroscopy to assess its potential to monitor tissue structural changes in structures up to 3 mm thick, under normal culture conditions. The method is based on an optical system in which an optical fiber delivers white light onto the tissue and the back-scattered light is collected for spectroscopy by another optical fiber. Results show correlation between changes in the spectral signatures with changes in the collagen gel contraction or internal organization in all three models of collagen construct analyzed. Therefore elastic scattering spectroscopy is a promising tool to monitor tissue-engineered constructs or early repair in collagenous tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号