首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is frequently associated with dysregulated lipid metabolism and lipotoxicity. Inonotus hispidus (Bull.: Fr.) P. Karst (IH) is an edible and medicinal parasitic mushroom. In this study, after a systematic analysis of its nutritional ingredients, the regulatory effects of IH on lipid metabolism were investigated in mice fed a high-fat diet (HFD). In HFD-fed mice, IH reversed the pathological state of the liver and the three types of fat and significantly decreased the levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), and leptin (LEP) and increased the level of high-density liptein cholesterol (HDL-C) in serum. Meanwhile, IH ameliorated liver damage by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and plasminogen activator inhibitor-1 (PAI-1) levels in the liver and serum. Compared with HFD-fed mice, IH significantly modulated the gut microbiota, changed the relative abundances of microflora at different taxonomic levels, and regulated lipid levels. The results showed that 30 differential lipids were found. Results from Western blotting confirmed that IH regulated the nuclear factor erythroid-2 related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway and oxidative stress. This study aimed to provide experimental evidence for the applicability of IH in obesity treatment.  相似文献   

2.
Akkermansia muciniphila is well known for the amelioration of inflammatory responses and restoration of intestinal barrier function. The beneficial effect of A. muciniphila occurred through contacting Toll-like receptor 2 (TLR2) on intestinal epithelial cells by wall components. In this case, the downstream mechanism of pasteurized A. muciniphila stimulating TLR2 for ameliorated intestinal barrier function is worth investigating. In this study, we evaluated the effect of live and pasteurized A. muciniphila on protecting the barrier dysfunction of Caco-2 intestinal epithelial cells induced by lipopolysaccharide (LPS). We discovered that both live and pasteurized A. muciniphila could attenuate an inflammatory response and improve intestinal barrier integrity in Caco-2 monolayers. We demonstrated that A. muciniphila enhances AMP-activated protein kinase (AMPK) activation and inhibits Nuclear Factor-Kappa B (NF-κB) activation through the stimulation of TLR2. Overall, we provided a specific mechanism for the probiotic effect of A. muciniphila on the intestinal barrier function of Caco-2 cells.  相似文献   

3.
Liver injury is a life-threatening condition that is usually caused by excessive alcohol consumption, improperdiet, and stressful lifestyle and can even progress to liver cancer. Tea is a popular beverage with proven health benefits and is known to exert a protective effect on the liver, intestines, and stomach. In this study, we analyzed the therapeutic effects of six kinds of tea on carbon tetrachloride (CCl4)-induced liver injury in a mouse model. The mice were injected with 10 mL/kg 5% CCl4 to induce liver injury and then given oral gavage of green tea, yellow tea, oolong tea, white tea, black tea, and dark tea, respectively. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured, and the expression levels of inflammation and oxidative stress-related proteins in the liver tissues were quantified. All six kinds of tea partly reduced the liver index, restored the size of the enlarged liver in the CCl4 model, and decreased the serum levels of ALT and AST. Furthermore, the highly fermented dark tea significantly reduced the expression levels of NF-κB and the downstream inflammatory factors, whereas the unfermented green tea inhibited oxidative stress by activating the antioxidant Nrf2 pathway. Taken together, tea can protect against liver inflammation, and unfermented tea can improve antioxidant levels. Further studies are needed on the bioactive components of tea to develop drugs against liver injury.  相似文献   

4.
5.
Inosine is a type of purine nucleoside, which is considered to a physiological energy source, and exerts a widely range of anti-inflammatory efficacy. The TLR4/MyD88/NF-κB signaling pathway is essential for preventing host oxidative stresses and inflammation, and represents a promising target for host-directed strategies to improve some forms of disease-related inflammation. In the present study, the results showed that inosine pre-intervention significantly suppressed the pulmonary elevation of pro-inflammatory cytokines (including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), malondialdehyde (MDA), nitric oxide (NO), and reactive oxygen species (ROS) levels, and restored the pulmonary catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities (p < 0.05) in lipopolysaccharide (LPS)-treated mice. Simultaneously, inosine pre-intervention shifted the composition of the intestinal microbiota by decreasing the ratio of Firmicutes/Bacteroidetes, elevating the relative abundance of Tenericutes and Deferribacteres. Moreover, inosine pretreatment affected the TLR4/MyD88/NF-κB signaling pathway in the pulmonary inflammatory response, and then regulated the expression of pulmonary iNOS, COX2, Nrf2, HO-1, TNF-α, IL-1β, and IL-6 levels. These findings suggest that oral administration of inosine pretreatment attenuates LPS-induced pulmonary inflammatory response by regulating the TLR4/MyD88/NF-κB signaling pathway, and ameliorates intestinal microbiota disorder.  相似文献   

6.
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.  相似文献   

7.
8.
Sugar reduction and sugar control are advocated and gaining popularity around the world. Sucrose, as the widely consumed ingredient in our daily diet, has been reported a relation to gastrointestinal diseases. However, the role of sucrose in inflammatory bowel disease remains controversial. Hence, our study aimed to elucidate the potential role of three doses of sucrose on DSS-induced colitis in C57BL/6 mice and the underlying mechanisms. The results showed that low-dose sucrose intervention alleviated colitis in mice, reducing the expression of inflammatory cytokines and repairing mucosal damages. In contrast, high-dose sucrose intervention exacerbated colitis. Furthermore, three doses of sucrose administration markedly altered gut microbiota composition. Notably, the low-dose sucrose restored microbial dysfunction and enhanced the production of short chain fatty acids (SCFAs). Specifically, the abundance of SCFAs-producing bacteria Faecalibaculum, Bacteroides, and Romboutsia were increased significantly in the LOW group. Consistently, PPAR-γ, activated by SCFAs, was elevated in the LOW group, thereby inhibiting the MAPK/NF-κB pathway. Together, our study demonstrates the differential effects of sucrose on colitis at different doses, providing a scientific basis for measuring and modifying the safe intake level of sugar and providing favorable evidence for implementing sugar reduction policies.  相似文献   

9.
The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.  相似文献   

10.
The presence of various proteins, including modified ones, in food which exhibit diverse immunogenic and sensitizing properties increases the difficulty of predicting host immune responses. Still, there is a lack of sufficiently reliable and comparable data and research models describing allergens in dietary matrices. The aim of the study was to estimate the immunomodulatory effects of β-lactoglobulin (β-lg) in comparison to those elicited by κ-casein (κ-CN), in vivo and ex vivo, using naïve splenocytes and a mouse sensitization model. Our results revealed that the humoral and cellular responses triggered by β-lg and κ-CN were of diverse magnitudes and showed different dynamics in the induction of control mechanisms. β-Lg turned out to be more immunogenic and induced a more dominant Th1 response than κ-CN, which triggered a significantly higher IgE response. For both proteins, CD4+ lymphocyte profiles correlated with CD4+CD25+ and CD4+CD25+Foxp3+ T cells induction and interleukin 10 secretion, but β-lg induced more CD4+CD25+Foxp3- Tregs. Moreover, ex vivo studies showed the risk of interaction of immune responses to different milk proteins, which may exacerbate allergy, especially the one caused by β-lg. In conclusion, the applied model of in vivo and ex vivo exposure to β-lg and κ-CN showed significant differences in immunoreactivity of the tested proteins (κ-CN demonstrated stronger allergenic potential than β-lg), and may be useful for the estimation of allergenic potential of various food proteins, including those modified in technological processes.  相似文献   

11.
Foxtail millet (FM) is receiving ongoing increased attention due to its beneficial health effects, including the hypoglycemic effect. However, the underlying mechanisms of the hypoglycemic effect have been underexplored. In the present study, the hypoglycemic effect of FM supplementation was confirmed again in high-fat diet and streptozotocin-induced diabetic rats with significantly decreased fasting glucose (FG), glycated serum protein, and areas under the glucose tolerance test (p < 0.05). We employed 16S rRNA and liver RNA sequencing technologies to identify the target gut microbes and signaling pathways involved in the hypoglycemic effect of FM supplementation. The results showed that FM supplementation significantly increased the relative abundance of Lactobacillus and Ruminococcus_2, which were significantly negatively correlated with FG and 2-h glucose. FM supplementation significantly reversed the trends of gene expression in diabetic rats. Specifically, FM supplementation inhibited gluconeogenesis, stimulated glycolysis, and restored fatty acid synthesis through activation of the PI3K/AKT signaling pathway. FM also reduced inflammation through inhibition of the NF-κB signaling pathway. Spearman’s correlation analysis indicated a complicated set of interdependencies among the gut microbiota, signaling pathways, and metabolic parameters. Collectively, the above results suggest that the hypoglycemic effect of FM was at least partially mediated by the increased relative abundance of Lactobacillus, activation of the PI3K/AKT signaling pathway, and inhibition of the NF-κB signaling pathway.  相似文献   

12.
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD.  相似文献   

13.
Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α–β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification.  相似文献   

14.
15.
16.
17.
Ventilator-induced lung injury (VILI) is an important critical care complication. Nuclear factor-κB (NF-κB) activation, a critical signaling event in the inflammatory response, has been implicated in the tracking of the lung injury. The present study aimed to determine the effect of simultaneous pretreatment with enteral aspirin and omega-3 fatty acid on lung injury in a murine VILI model. We compared the lung inflammation after the sequential administration of lipopolysaccharides and mechanical ventilation between the pretreated simultaneous enteral aspirin and omega-3 fatty acid group and the non-pretreatment group, by quantifying NF-κB activation using an in vivo imaging system to detect bioluminescence signals. The pretreated group with enteral aspirin and omega-3 fatty acid exhibited a smaller elevation of bioluminescence signals than the non-pretreated group (p = 0.039). Compared to the non-pretreated group, the pretreatment group with simultaneous enteral aspirin and omega-3 fatty acid showed reduced expression of the pro-inflammatory cytokine, tumor necrosis factor-α, in bronchoalveolar lavage fluid (p = 0.038). Histopathological lung injury scores were also lower in the pretreatment groups compared to the only injury group. Simultaneous pretreatment with enteral administration of aspirin and omega-3 fatty acid could be a prevention method for VILI in patients with impending mechanical ventilation therapy.  相似文献   

18.
Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-β1- or IL-1β-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-β1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, p-SMAD2, p-SMAD3, and ABCG2 expression in A549 cells. Furthermore, ε-viniferin was found to significantly inhibit lung metastasis in A549 cell xenograft metastatic mouse models. In view of these findings, α-viniferin and ε-viniferin may play an important role in the prevention of EMT and cancer metastasis in lung cancer.  相似文献   

19.
α-Dicarbonyl compounds, particularly methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are highly reactive precursors for the formation of advanced glycation end products (AGEs). They are formed in vivo and during food processing. This study aimed to investigate the role of intracellular glutathione (GSH) levels in the induction of Nrf2-mediated gene expression by α-dicarbonyl compounds. The reactions between α-dicarbonyl compounds (MGO, GO, and 3-DG) and GSH were studied by LC-MS in a cell-free system. It was shown that these three α-dicarbonyl compounds react instantaneously with GSH, with the GSH-mediated scavenging decreasing in the order MGO > GO > 3DG. Furthermore, in a cell-based reporter gene assay MGO, GO, and 3-DG were able to induce Nrf2-mediated gene expression in a dose-dependent manner. Modulation of intracellular GSH levels showed that the cytotoxicity and induction of the Nrf2-mediated pathway by MGO, GO and 3-DG was significantly enhanced by depletion of GSH, while a decrease in Nrf2-activation by MGO and GO but not 3-DG was observed upon an increase of the cellular GSH levels. Our results reveal subtle differences in the role of GSH in protection against the three typical α-dicarbonyl compounds and in their induction of Nrf2-mediated gene expression, and point at a dual biological effect of the α-dicarbonyl compounds, being reactive toxic electrophiles and -as a consequence- able to induce Nrf2-mediated protective gene expression, with MGO being most reactive.  相似文献   

20.
Allergy can cause intestinal damage, including through cell apoptosis. In this study, intestinal cell apoptosis was first observed in the β-conglycinin (β-CG) allergy model, and the effect of Lactobacillus rhamnosus GG (LGG) on reducing apoptosis of cells in the intestine and its underlying mechanisms were further investigated. Allergic mice received oral LGG daily, and intestinal tissue apoptotic cells, gut microbiota, and metabolites were evaluated six and nine days after intervention. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed that LGG intervention could reduce the incidence of cell apoptosis more effectively than natural recovery (NR). The results of 16S rRNA analysis indicated that LGG intervention led to an increase in the relative abundance of Bacteroides. Metabolite analysis of intestinal contents indicated that histamine, N-acetylhistamine, N(α)-γ-glutamylhistamine, phenylalanine, tryptophan, arachidonic acid malate, and xanthine were significantly decreased, and deoxycholic acid, lithocholic acid were significantly increased after the LGG intervention on β-CG allergy; the decreases in histamine and N(α)-γ-glutamylhistamine were significant compared with those of NR. In conclusion, LGG reduces apoptosis of cells induced by β-CG allergy, which may be related to regulation of Bacteroides and the bile secretion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号