首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a new family with Teunissen-Cremers syndrome. The proband presented with congenital conductive hearing loss due to stapes ankylosis and incus short process fixation with skeletal anomalies including symphalangism, broad thumbs and broad first toes, syndactyly, brachydactyly, contractures of the elbows and knees, hyperopia and lens opacities. This constellation of symptoms is compatible with the diagnosis of one of the joint-fusion syndromes namely the Teunissen-Cremers syndrome (TCS), which was first reported in 1990. Mutations in the NOG gene which encodes the noggin protein, a bone morphogenetic protein antagonist, have been identified in TCS as well as in four other autosomal dominant disorders including proximal symphalangism (SYM1), multiple synostosis (SYNS1), Tarsal-Carpal coalition syndrome and brachydactyly type B (BDB). Interestingly, we found that the mutation P35S described in this family has already been reported in patients affected with SYM1 as well as with BDB syndromes.  相似文献   

2.
We report noggin mutations in three Spanish families with fibrodysplasia ossificans progressiva (FOP). The three propositi have typical FOP findings; in the first and third families the parents are unaffected, while in the second family the father is partially affected. DNA of the three propositi and their parents was screened by sequencing for mutations in the noggin gene (NOG). Sequencing indicated a G to C mutation at nucleotide 274 of the NOG gene in the first propositus, encoding for the G92R substitution at the peptide level; this first mutation is de novo, the corresponding change not being observed in parents. In the second propositus, a G to T mutation at nucleotide 271 encodes for the G91C substitution, transmitted in the corresponding family by the partially affected father. In the third propositus, sequencing indicated a G to A mutation at nucleotide 275, encoding for the G92E substitution; this third mutation is de novo. All three mutations, as well as the Delta42 deletion already reported, resulted in the alteration of the portion of the NOG gene at positions 265-282, encoding for the potential N-myristoylation site at residues 89-GGGGGA-94.  相似文献   

3.
Proximal symphalangism (SYM1) is an autosomal dominant disorder characterized by ankylosis of the proximal interphalangeal joints and fusion of carpal and tarsal bones. We identified and characterized two five-generation Chinese families with SYM1. The two families share some similarities (e.g., osseous fusion of interphalangeal joints of the 2-4 fingers) with SYM1 families with mutations in the NOG gene or the family with mutation R438L recently reported in the GDF5 gene (encoding a bone morphogenetic protein family member). However, they show some unique features including the absence of cuboid bone, the lack of shortness of the first and fifth metacarpal bones, and manifestation of flat feet. Genome-wide linkage analysis of the two families mapped the disease gene to marker D20S112 with a combined LOD score of 4.32. Mutational analysis revealed a novel E491K mutation in the GDF5 gene in both families. The mutation occurs at a highly conserved residue in the TGF-beta domain of GDF5 and represents the second GDF5 mutation identified for SYM1 to date. The E491K mutation co-segregated with the affected individuals in the two families, and did not exist in unaffected family members or 200 normal controls. These results indicate that defects in GDF5 can cause SYM1 in the Chinese population, and expand the spectrum of clinical phenotypes associated with mutant GDF5.  相似文献   

4.
目的报道1例中国人少见的β地中海贫血基因突变及其产前诊断结果。方法采用PCR产物直接DNA序列分析法对1例父亲和胎血标本进行检测。结果父亲和胎儿均携带一种中国人少见的β地中海贫血基因突变CD 37(TGG→TGA)。结论β地中海贫血基因37(TGG→TGA)突变的报道,丰富了中国人β地中海贫血基因突变谱,对于指导人群筛查、遗传咨询和产前诊断具有重要价值。  相似文献   

5.
6.
The NOG gene encodes noggin, a secreted polypeptide that is important for regulating multiple signaling pathways during human development, particularly in cartilage and bone. The hallmark of NOG-related syndromes is proximal symphalangism, defined by abnormal fusion of the proximal interphalangeal joints of the hands and feet. Many additional features secondary to NOG mutations are commonly but inconsistently observed, including a characteristic facies with a hemicylindrical nose, congenital conductive hearing loss due to stapes fixation, and hyperopia. The variable clinical presentations led to the designation of five different autosomal dominant syndromes, all subsequently found to have resulted from NOG mutations. These include (1) proximal symphalangism; (2) multiple synostoses syndrome 1; (3) stapes ankylosis with broad thumbs and toes; (4) tarsal-carpal coalition syndrome; and (5) brachydactyly type B2. Herein, we review the phenotypic features associated with mutations in the NOG gene, demonstrating the overlapping characteristics of these syndromes. Due to the variable phenotypic spectrum within families and among families with the same mutation, we propose a unifying term, NOG-related symphalangism spectrum disorder (NOG-SSD), to aid in the clinical recognition and evaluation of all affected individuals with these phenotypes. These NOG gene variants are available in a new locus-specific database (https://NOG.lovd.nl).  相似文献   

7.
The APC gene was investigated in 31 unrelated polyposis coli families by SSCP analysis and the protein truncation test. Twenty-three germline mutations were identified which gave rise to a variety of different phenotypes. Some of these mutations have already been described; however we report six previously unpublished mutations. Typical disease symptoms were observed in families who harboured mutations between exon 4 (codon 169) and codon 1393 of exon 15. Mutations beyond codon 1403 were associated with more varied phenotype with respect to the development of extracolonic symptoms. In this report we provide support for the notion that there appears to be a correlation between the location of an APC mutation (beyond codon 1403) and extracolonic manifestations of familial adenomatous polyposis.  相似文献   

8.
Disseminated superficial actinic porokeratosis (DSAP) is the most common form of porokeratosis and a severe chronic autosomal dominant cutaneous disorder with high genetic heterogeneity. Recently, the mevalonate kinase (MVK) gene has been identified as a candidate gene responsible for DSAP and multiple mutations have been reported. Here, we report identification of a novel missense mutation in the MVK gene in a Chinese family with DSAP. A 50-year-old male was diagnosed as proband of DSAP based on the clinical and histological findings, which show numerous hyperpigmented macules by physical examination and cornoid lamella by skin biopsy. Similar skin symptoms were also observed in his father, who died many years ago. We prepared genomic DNA from the proband, unaffected individuals from his family members, as well as 100 unrelated healthy controls. PCR was then conducted using the above genomic DNA as template and the MVK gene-specific primers. The PCR product was subjected to direct sequencing and the sequence was compared to that of MVK gene within the NCBI database. We detected a heterozygous C to G transition at nucleotide 643 in exon 7 of MVK gene of the proband. This will result in an amino acid change at codon 215 (P.Arg215Gly.), which is from an arginine codon (CGA) to a Glycine codon (GGA). We did not detect any mutation in the unaffected family members or the 100 unrelated healthy controls, demonstrating that this is a novel missense mutation in MVK gene and therefore, contributes to the molecular diagnosis of DSAP.  相似文献   

9.
10.
Heterozygous missense mutations in the serine-threonine kinase receptor BMPR1B result typically in brachydactyly type A2 (BDA2), whereas mutations in the corresponding ligand GDF5 cause brachydactyly type C (BDC). Mutations in the GDF inhibitor Noggin (NOG) or activating mutations in GDF5 cause proximal symphalangism (SYM1). Here, we describe a novel mutation in BMPR1B (R486Q) that is associated with either BDA2 or a BDC/SYM1-like phenotype. Functional investigations of the R486Q mutation were performed and compared with the previously reported BDA2-causing mutation R486W and WT BMPR1B. Overexpression of the mutant receptors in chicken micromass cultures resulted in a strong inhibition of chondrogenesis with the R486Q mutant, showing a stronger effect than the R486W mutant. To investigate the consequences of the BMPR1B mutations on the intracellular signal transduction, we used stably transfected C2C12 cells and measured the activity of SMAD-dependent and SMAD-independent pathways. SMAD activation after stimulation with GDF5 was suppressed in both mutants. Alkaline phosphatase induction showed an almost complete loss of activation by both mutants. Our data extend the previously known mutational and phenotypic spectrum associated with mutations in BMPR1B. Disturbances of NOG-GDF5-BMPR1B signaling cascade can result in similar clinical manifestations depending on the quantitative effect and mode of action of the specific mutations within the same functional pathway.  相似文献   

11.
Jervell and Lange-Nielsen syndrome (JLNS) is characterized by sensorineural deafness, QT prolongation, abnormal T waves, ventricular tachyarrhythmias, and autosomal recessive inheritance. Previously homozygous mutations in the potassium channel-encoding genes, KvLQT1 (alpha-subunit) and KCNE1 (beta-subunit), have been described in consanguineous families with JLNS. We screened two nonconsanguineous families with JLNS for mutations in KvLQT1, using single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, and DNA sequencing. In one family, a missense mutation was identified in exon 6 of KvLQT1 on the maternal side, resulting in a glycine to aspartic acid substitution at codon 269 (G269D). The apparently normal father had an incompletely penetrant missense mutation in exon 3 of KvLQT1, introducing a premature stop codon at position 171. In the other family, a missense mutation resulting in the substitution of asparagine for aspartic acid at codon 202 (D202N) was identified in the mother and maternal grandmother, who had QTc prolongation (borderline in the mother), while the father and paternal grandfather, who were clinically normal, had a deletion of nucleotide 585, resulting in a frameshift and premature termination. In both families, the proband inherited both mutations. In this report we provide evidence that not only homozygous but also compound heterozygous mutations in KvLQT1 may cause JLNS in nonconsanguineous families. Incomplete penetrance in individuals with mutations appears to be frequent, indicating a higher prevalence of mutations than estimated previously. Interestingly, mutations resulting in truncation of the protein appear to be benign, with heterozygous carriers being asymptomatic.  相似文献   

12.
Holoprosencephaly (HPE) is the most common structural anomaly of the human forebrain. Various genetic and teratogenic causes have been implicated in its pathogenesis. A recent report in mice described Noggin (NOG) as a candidate gene involved in the etiogenesis of microform HPE. Here, we present for the first time genetic analysis of a large HPE cohort for sequence variations in NOG. On the basis of our study, we conclude that mutations in the coding region of NOG are rare, and play at most an uncommon role in human HPE.  相似文献   

13.
Familial chylomicronemia is an autosomal recessive disease characterised by fasting triglyceridemia and an absence of lipoprotein lipase (LpL) activity in post-heparin plasma. The disease is a result of mutation in either the lipoprotein lipase (Lpl) gene or in the apoCII gene which codes for an essential co-factor. To date, over 80 mutations in the LpL gene have been reported. The proband, a 30 month old female, presented with fasting triglycerides of 3192 mg/dl, and no detectable LpL mass or activity in post-heparin plasma. Sequencing of all of the exons and exon/intron boundaries of the LpL gene showed that she was a compound heterozygote with G-A transitions in codon 188 (G188E:GGG to GAG) generating an avall restriction site and in codon 259 (S259G:AGT to GGT) generating a bssKI site. Restriction digests confirmed the mutations and determined the incidence within the family. The father (55%LPL activity), paternal aunt (82%) and paternal grandmother (29%) were all heterozygous for the S259G mutation whilst her sister (55%), mother (73%) and maternal grandfather (45%) were heterozygous for the G188E mutation. The maternal grandmother (114%) was unaffected.  相似文献   

14.
Proximal symphalangism is an autosomal-dominant disorder with ankylosis of the proximal interphalangeal joints, carpal and tarsal bone fusion, and conductive deafness. These symptoms are shared by another disorder of joint morphogenesis, multiple synostoses syndrome. Recently, it was reported that both disorders were caused by heterozygous mutations of the human noggin gene (NOG). To date, seven mutations of NOG have been identified from unrelated families affected with joint morphogenesis. To characterize the molecular lesions of proximal symphalangism, we performed analyses of NOG in three Japanese individuals with proximal symphalangism. We found three novel mutations: g.551G>A (C184Y) in a sporadic case of symphalangism, g.386T>A (L129X) in a familial case of symphalangism, and a g.58delC (frameshift) in a family with multiple synostosis syndrome. Characteristic genotype-phenotype correlations have not been recognized from the mutations in the NOG gene.  相似文献   

15.
Mutations in GJB2 (which encodes the gap-junction protein connexin 26) are the most common cause of genetic deafness in many populations. To date, more than 100 deafness-causing mutations have been described in this gene. The majority of these mutations are inherited in an autosomal recessive manner, but approximately 19 GJB2 mutations have been associated with dominantly inherited hearing loss. One, W44C, was first identified in two families from France. We subsequently described a family in the United States with the same mutation. In these families, W44C segregates with a dominantly inherited, early-onset, progressive, sensorineural deafness that is worse in the high frequencies. Since that report, we have tested additional family members and identified two siblings who are compound heterozygous for the W44C and K15T mutations. Their father, the original proband, is heterozygous for the dominant W44C mutation, and their mother is compound heterozygous for two recessively inherited mutations, K15T and 35delG. Both children have a profound, sensorineural deafness and use manual communication, in contrast to their parents and other relatives whose hearing losses are less severe and who can communicate orally. The difference in phenotype may be a result of the disruption of different functions of the gap-junction protein by the two mutations, which have an additive effect.  相似文献   

16.
The gene for Wilson disease (WD) has been cloned as a P type copper transporter gene (ATP7B). To elucidate the possible genetic mechanism for the diversity of clinical manifestations, we characterised 22 Taiwanese families with WD by microsatellite haplotyping of close DNA markers D13S314-D13S301-D13S316. We also screened for mutations of codon 778 in the transmembrane region. There were at least 15 haplotypes within eight broad subgroups observed among 44 WD chromosomes. Among the 22 unrelated patients, we found that six patients (27%) carried a codon 778 mutation. Nucleotide sequence analysis showed there were two different mutations: the previously reported Arg778Leu mutation in four patients and Arg778Gln, a new mutation, in two patients. The two different mutations of the same codon occurred in two distinct microsatellite haplotypes.  相似文献   

17.
Fluoroquinolones (FQs) have been increasingly used for effective treatment of infections caused by rapidly growing mycobacteria, and resistance to this drug has been predominantly attributed to gyrA and gyrB mutations. Accordingly, this study investigated a total of 36 Mycobacterium massiliense clinical isolates for their susceptibility to ciprofloxacin and presence of gyrA and gyrB gene mutations. The minimal inhibitory concentration (MIC) values, determined by broth microdilution method, of 35 ciprofloxacin-resistant isolates ranged between 4 and 16 μg/mL and a single susceptible isolate was obtained. A total of 31 of 35 (88.5%) ciprofloxacin-resistant isolates presented an amino acid substitution at codon 90 (Ala-90→Val) and no isolate presented mutation at position Asp-94. Moreover, 4 of 35 (11.4%) ciprofloxacin-resistant and one susceptible isolate had no mutation in Ala-90 and Asp-94. No gyrB mutation was observed in all tested M. massiliense isolates. In conclusion, our results have shown that mutations of gyrA codon 90 are frequent and may constitute an important mechanism of resistance to FQ in M. massiliense.  相似文献   

18.
Familial adenomatous polyposis (FAP) is a familial form of colon cancer caused by mutation of the adenomatous polyposis coli (APC) gene. Although the APC gene has been extensively studied in the Caucasian population, it has not been previously described in the Chinese population. In the present study, we investigated APC mutation and phenotypic spectrum in the Singapore FAP families who are predominantly Chinese. The protein truncation test (PTT) was used to screen the entire APC gene for germline mutations in 28 unrelated families. Fifteen different mutations were identified in 22 families. Eight mutations were 1-11 basepair deletions or insertions; three involved deletions of whole exons and four were nonsense mutations. Nine of the mutations, including two complex rearrangements, are novel. Eight families including three de novo cases have the same (AAAGA) deletion at codon 1309, indicating that like the Western families, codon 1309 is also the mutation 'hot spot' for Singapore FAP families. In contrast, we did not find any mutation in codon 1061, the second hot spot for the Western population. Congenital hypertrophy of the retinal pigment epithelium (CHRPE) is consistently associated with the prescribed domain (codons 463 to 1387) and is the only phenotype with no intra-family variation. Other than CHRPE, differences in the type and frequency of extracolonic manifestations within the FAP families suggest the influence of modifying genes and environmental factors.  相似文献   

19.
Different genetic mutations have been described in complement component C7 deficiency, a molecular defect which is clinically associated with an increased susceptibility to neisserial recurrent infections, although some cases remain asymptomatic. In this work we report the genetic bases of C7 deficiency in one Spanish family. Exon-specific PCR and sequencing revealed a novel point mutation at nucleotide 615 (exon 6) leading to a stop codon (UGG to UGA) in the patient, his mother, and sister. This transversion causes the premature truncation of the C7 protein (W183X). Additionally, we detected a missense mutation at position 1135 (exon 9) located in the first nucleotide of the codon GGG (CGG), resulting in an amino acid change (G357R) in the patient, his father, as well as in his sister. This latter mutation had been previously described in individuals from Moroccan Sephardic Jewish ancestry. Since both heterozygous mutations were found in the patient as well as in his asymptomatic sister, we analyse other meningococcal defence mechanisms such as polymorphisms of the opsonin receptors on polymorphonuclear cells. Results showed that the patient and his sister bore identical combinations of FcgammaRIIA-H/R131 and FcgammaRIIIB-NA1/2 allotypes. Our results provide further evidence that the molecular pathogenesis of C7 deficiency as well as susceptibility to meningococcal disease are heterogeneous, since different families carry different molecular defects, although many of the C7 defects appear to be homogeneous in individuals from certain geographical areas. The missense mutation G357R would make an interesting topic of analysis with regard to meningococcal disease susceptibility in the Spanish population.  相似文献   

20.
X-linked adrenal hypoplasia congenita (AHC) is characterized by primary adrenal insufficiency and is frequently associated with hypogonadotropic hypogonadism (HHG). Mutations of the DAX1 gene have been reported in patients with AHC and HHG. We found a novel DAX1 mutation in our patient. Sequence analysis of the patient's DAX1 demonstrated a 1-bp (G) deletion at codon 49 in exon 1. The mutation shifts the reading frame, resulting in completely different amino acid sequences from codon 49 to the premature stop codon at 84. The G was present at this position in the sequences of the father and 2 younger brothers. Direct sequence and single-strand conformation polymorphism analyses of polymerase chain reaction fragments revealed that the mutation at codon 49 was heterozygously present in the mother's DAX1 gene. The codon 84 is located in the first half of the DNA binding domain, and the mutation site is closer to the N-terminus than those in previously reported cases. The onset of adrenal insufficiency in the neonatal period as seen in our patient has also been reported in other patients with different DAX1 mutations, especially in a patient with DAX1 protein lacking 11 amino acids at the C-terminus. Thereore, it is less likely that position of termination codons correlate to clinical manifestations. Am. J. Med. Genet. 76:62–66, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号