首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A marked decrease in the activity of mitochondrial complex II (succinate dehydrogenase, SD) has been found in the brains of Huntington's disease (HD) patients. Here we have examined the possibility that SD inhibitors might produce their toxic action by increasing corticostriatal glutamatergic transmission. We report that SD inhibitors produce a durable augmentation of NMDA-mediated corticostriatal excitation (DANCE) in striatal spiny neurons, but not in striatal cholinergic interneurons. DANCE involves increased intracellular calcium, activation of MAP kinase ERK and is critically dependent upon endogenous dopamine (DA) acting via D2-like receptors. This pathological form of corticostriatal synaptic plasticity might play a key role in the regional and cell-type specific neuronal death observed in HD.  相似文献   

2.
Huntington's disease (HD) is a genetic neurodegenerative condition characterized by abnormal dopamine (DA)–glutamate interactions, severe alterations in motor control, and reduced behavioral flexibility. Experimental models of disease show that during symptomatic phases, HD shares with other hyperkinetic disorders the loss of synaptic depotentiation in the striatal spiny projection neurons (SPNs). Here we test the hypothesis that corticostriatal long-term depression (LTD), a well-conserved synaptic scaling down response to environmental stimuli, is also altered in symptomatic male R6/1 mice, a HD model with gradual development of symptoms. In vitro patch-clamp and intracellular recordings of corticostriatal slices from R6/1 mice confirm that, similar to other models characterized by hyperkinesia and striatal DA D1 receptor pathway dysregulation, once long-term potentiation (LTP) is induced, synaptic depotentiation is lost. Our new observations show that activity-dependent LTD was abolished in SPNs of mutant mice. In an experimental condition in which N-methyl-d -aspartate (NMDA) receptors are normally not recruited, in vitro bath application of DA revealed an abnormal response of D1 receptors that caused a shift in synaptic plasticity direction resulting in an NMDA-dependent LTP. Our results demonstrate that corticostriatal LTD is lost in R6/1 mouse model and confirm the role of aberrant DA–glutamate interactions in the alterations of synaptic scaling down associated with HD symptoms.  相似文献   

3.
We have previously found that thalamostriatal axodendritic terminals are reduced as early as 1 month of age in heterozygous Q140 HD mice (Deng et al. [ 2013 ] Neurobiol Dis 60:89–107). Because cholinergic interneurons are a major target of thalamic axodendritic terminals, we examined the VGLUT2‐immunolabeled thalamic input to striatal cholinergic interneurons in heterozygous Q140 males at 1 and 4 months of age, using choline acetyltransferase (ChAT) immunolabeling to identify cholinergic interneurons. Although blinded neuron counts showed that ChAT+ perikarya were in normal abundance in Q140 mice, size measurements indicated that they were significantly smaller. Sholl analysis further revealed the dendrites of Q140 ChAT+ interneurons were significantly fewer and shorter. Consistent with the light microscopic data, ultrastructural analysis showed that the number of ChAT+ dendritic profiles per unit area of striatum was significantly decreased in Q140 striata, as was the abundance of VGLUT2+ axodendritic terminals making synaptic contact with ChAT+ dendrites per unit area of striatum. The density of thalamic terminals along individual cholinergic dendrites was, however, largely unaltered, indicating that the reduction in the areal striatal density of axodendritic thalamic terminals on cholinergic neurons was due to their dendritic territory loss. These results show that the abundance of thalamic input to individual striatal cholinergic interneurons is reduced early in the life span of Q140 mice, raising the possibility that this may occur in human HD as well. Because cholinergic interneurons differentially affect striatal direct vs. indirect pathway spiny projection neurons, their reduced thalamic excitatory drive may contribute to early abnormalities in movement in HD. J. Comp. Neurol. 524:3518–3529, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Striatal spiny neurons are selectively vulnerable in Huntington's disease (HD) and ischemia, whereas large aspiny (LA) cholinergic interneurons of the striatum are spared in these pathological conditions. We have investigated whether a different sensitivity to ionotropic glutamatergic agonists might account for this differential vulnerability. Intracellular recordings were obtained from morphologically identified striatal spiny neurons and LA cholinergic interneurons by using a rat brain slice preparation. The two striatal neuronal subtypes had strikingly different intrinsic membrane properties. Both subtypes responded to cortical stimulation with excitatory postsynaptic potentials: these potentials, however, had a different time course and pharmacology in the two classes of cells. Interestingly, membrane depolarizations and inward currents produced by exogenous glutamate receptor agonists (AMPA, kainate, and NMDA) were remarkably larger in spiny neurons than in LA interneurons. Moreover, concentrations of agonists producing reversible membrane changes in LA interneurons caused irreversible depolarizations in spiny cells. Our data suggest that the different physiological responses induced by the activation of ionotropic glutamate receptors may account for the cell type-specific vulnerability of striatal neurons in ischemia and HD.  相似文献   

5.
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.  相似文献   

6.
In monogenetic generalized forms of dystonia, in vitro neurophysiological recordings have demonstrated direct evidence for abnormal plasticity at the level of the cortico‐striatal synapse. It is unclear whether similar abnormalities contribute to the pathophysiology of cervical dystonia, the most common type of focal dystonia. We investigated whether abnormal cortico‐striatal synaptic plasticity contributes to abnormal reward‐learning behavior in patients with focal dystonia. Forty patients and 40 controls performed a reward gain and loss avoidance reversal learning task. Participant's behavior was fitted to a computational model of the basal ganglia incorporating detailed cortico‐striatal synaptic learning rules. Model comparisons were performed to assess the ability of four hypothesized receptor specific abnormalities of cortico‐striatal long‐term potentiation (LTP) and long‐term depression (LTD): increased or decreased D1:LTP/LTD and increased or decreased D2: LTP/LTD to explain abnormal behavior in patients. Patients were selectively impaired in the post‐reversal phase of the reward task. Individual learning rates in the reward reversal task correlated with the severity of the patient's motor symptoms. A model of the striatum with decreased D2:LTP/ LTD best explained the patient's behavior, suggesting excessive D2 cortico‐striatal synaptic depotentiation could underpin biased reward‐learning in patients with cervical dystonia. Reversal learning impairment in cervical dystonia may be a behavioral correlate of D2‐specific abnormalities in cortico‐striatal synaptic plasticity. Reinforcement learning tasks with computational modeling could allow the identification of molecular targets for novel treatments based on their ability to restore normal reward‐learning behavior in these patients.  相似文献   

7.
Recently, the striatum has been implicated in the spread of epileptic seizures. As the absence of functional scaffolding protein Bassoon in mutant mice is associated with the development of pronounced spontaneous seizures, we utilized this new genetic model of epilepsy to investigate seizure-induced changes in striatal synaptic plasticity. Mutant mice showed reduced long-term potentiation in striatal spiny neurons, associated with an altered N -methyl- d -aspartate (NMDA) receptor subunit distribution, whereas GABAergic fast-spiking (FS) interneurons showed NMDA-dependent short-term potentiation that was absent in wild-type animals. Alterations in the dendritic morphology of spiny neurons and in the number of FS interneurons were also observed. Early antiepileptic treatment with valproic acid reduced epileptic attacks and mortality, rescuing physiological striatal synaptic plasticity and NMDA receptor subunit composition. However, morphological alterations were not affected by antiepileptic treatment. Our results indicate that, in Bsn mutant mice, initial morphological alterations seem to reflect a more direct effect of the abnormal genotype, whereas plasticity changes are likely to be caused by the occurrence of repeated cortical seizures.  相似文献   

8.
Two distinct forms of synaptic plasticity have been described at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Along with the massive glutamatergic inputs originating from the cortex, striatal neurons receive a myriad of other synaptic contacts arising from different sources. In particular, while the nigrostriatal pathway provides this brain area with dopamine (DA), intrinsic circuits are the main source of acetylcholine (ACh) and nitric oxide (NO). The three neurotransmitter systems interact with each other to determine whether corticostriatal LTP or LTD is triggered in response to repetitive synaptic stimulation. Two distinct subtypes of striatal interneurons produce ACh and NO in the striatum. These interneurons are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exert a feedforward control of the excitability of striatal projection neurons by ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse. The integrative action exerted by striatal projection neurons on the converging information arising from the cortex, nigral DA neurons, and from ACh- and NO-producing interneurons dictates the final output of the striatum to the other structures of the basal ganglia.  相似文献   

9.
The striatum represents the main input into the basal ganglia. Neurons projecting from the striatum receive a large convergence of afferents from all areas of the cortex and transmit neural information to the basal ganglia output structures. Corticostriatal transmission is essential in the regulation of voluntary movement, in addition to behavioural control, cognitive function and reward mechanisms. Long-term potentiation (LTP) and long-term depression (LTD), the two main forms of synaptic plasticity, are both represented at corticostriatal synapses and strongly depend on the activation of dopamine receptors. Here, we discuss possible feedforward and feedback mechanisms by which striatal interneurons, in association with striatal spiny neurons and endogenous dopamine, influence the formation and maintenance of both LTP and LTD. We also propose a model in which the spontaneous membrane oscillations of neurons projecting from the striatum (named 'up' and 'down' states), in addition to the pattern of release of endogenous dopamine, bias the synapse towards preferential induction of LTP or LTD. Finally, we discuss how endogenous dopamine crucially influences changes in synaptic plasticity induced by pathological stimuli, such as energy deprivation.  相似文献   

10.
The emergence of levodopa (l-DOPA)-induced dyskinesia and motor fluctuations represents a major clinical problem in Parkinson's disease (PD). While it has been suggested that the daily dose of l-DOPA can play a critical role, the mechanisms linking l-DOPA dosage to the occurrence of motor complications have not yet been explored. Using an experimental model of PD we have recently demonstrated that long-term l-DOPA treatment leading to the induction of abnormal involuntary movements (AIMs) alters corticostriatal bidirectional synaptic plasticity. Dyskinetic animals, in fact, lack the ability to reverse previously induced long-term potentiation (LTP). This lack of depotentiation has been associated to a defect in erasing unessential motor information. Here chronic l-DOPA treatment was administered at two different doses to hemiparkinsonian rats, and electrophysiological recordings were subsequently performed from striatal spiny neurons. Both low and high doses of l-DOPA restored normal LTP, which was disrupted following dopamine (DA) denervation. By the end of the chronic treatment, however, while the low l-DOPA dose induced AIMs only in half of the rats, the high dose caused motor complications in all the treated animals. Interestingly, the dose-related expression of motor complications was associated with a lack of synaptic depotentiation. Our study provides further experimental evidence to support a direct correlation between the daily dosage of l-DOPA and the induction of motor complications and establishes a critical pathophysiological link between the lack of synaptic depotentiation and the expression of AIMs.  相似文献   

11.
Elucidating the link between cellular activity and goal‐directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non‐rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one‐half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague‐Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function. J. Comp. Neurol. 524:1062–1080, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Several experimental data indicate that tissue plasminogen activator (tPA) is involved in memory formation and synaptic plasticity in different brain areas. In the attempt to highlight the role of this serine protease in striatal neuron activity, mice lacking tPA have been used for electrophysiological, immunohistochemical and Western blot experiments. Disruption of tPA gene prevented corticostriatal long-term potentiation, an NMDA-dependent form of synaptic plasticity requiring the stimulation of both dopamine and acetylcholine receptors. Spontaneous and evoked glutamatergic transmission was intact in the striatum of tPA-deficient mice, as was the nigrostriatal dopamine innervation and the expression of dopamine D1 receptors. Conversely, the sensitivity of striatal cholinergic interneurons to dopamine D1 receptor stimulation was lost in these mutants, suggesting that tPA facilitates long-term potentiation (LTP) induction in the striatum by favouring the D1 receptor-mediated excitation of acetylcholine-producing interneurons. The demonstration that tPA ablation interferes with the induction of corticostriatal LTP and with the dopamine receptor-mediated control of cholinergic interneurons might help to explain the altered striatum-dependent learning deficits observed in tPA-deficient mice and provides new insights into the molecular mechanisms underlying synaptic plasticity in the striatum.  相似文献   

13.
Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by the progressive onset of cognitive, psychiatric, and motor symptoms. In parallel, the neuropathology of HD is characterized by progressive loss of projection neurons in cortex and striatum; striatal cholinergic interneurons are relatively spared. Nonetheless, there is evidence that striatal acetylcholine (ACh) function is altered in HD. The present study is the first to examine striatal ACh function in awake, behaving animals, using the R6/2 mouse model of HD, which is transgenic for exon 1 of the mutant huntingtin gene. Physiological levels of extracellular striatal ACh were monitored in R6/2 mice and wild type controls using in vivo microdialysis. Results indicate that spontaneous ACh release is reduced in R6/2 mice relative to controls. Intrastriatal application of the GABAA antagonist bicuculline methiodide (10.0 μM) significantly elevated ACh levels in both R6/2 mice and wild type controls, while overall ACh levels were reduced in the R6/2 mice compared to the wild type group. In contrast, systemic administration of the D1 dopamine receptor partial agonist, SKF-38393 (10.0 mg/kg, IP), elevated ACh levels in control animals, but not R6/2 mice. Taken together, the present results suggest that GABA-mediated inhibition of striatal ACh release is intact in R6/2 mice, further demonstrating that cholinergic interneurons are capable of increased ACh release, whereas D1 receptor-dependent activation of excitatory inputs to striatal cholinergic interneurons is dysfunctional in R6/2 mice. Reduced levels of extracellular striatal ACh in HD may reflect abnormalities in the excitatory innervation of cholinergic interneurons, which may have implications ACh-dependent processes that are altered in HD, including corticostriatal plasticity.  相似文献   

14.
The cellular localization and development of neuronal intranuclear inclusions (NIIs) in cortex and striatum of R6/2 HD transgenic mice were studied to ascertain the relationship of NIIs to symptom formation in these mice and gain clues regarding the possible relationship of NII formation to neuropathology in Huntington's disease (HD). All NIIs observed in R6/2 mice were ubiquitinated, and no evidence was observed for a contribution to them from wild-type huntingtin; they were first observed in cortex and striatum at 3.5 weeks of age. In cortex, NIIs increased rapidly in size and prevalence after their appearance. Generally, cortical projection neurons developed NIIs more rapidly than cortical interneurons containing calbindin or parvalbumin. Few cortical somatostatinergic interneurons, however, formed NIIs. In striatum, calbindinergic projection neurons and parvalbuminergic interneurons rapidly formed NIIs, but they formed more gradually in cholinergic interneurons, and few somatostatinergic interneurons developed NIIs. Striatal NIIs tended to be smaller than those in cortex. The early accumulation of NIIs in cortex and striatum in R6/2 mice is consistent with the early appearance of motor and learning abnormalities in these mice, and the eventual pervasiveness of NIIs at ages at which severe abnormalities are evident is consistent with their contribution to a neuronal dysfunction underlying the abnormalities. That cortex develops larger NIIs than striatum, however, is inconsistent with the preferential loss of striatal neurons in HD but is consistent with recent evidence of early morphological abnormalities in cortical neurons in HD. That calbindinergic and parvalbuminergic striatal neurons develop large NIIs is consistent with a contribution of nuclear aggregate formation to their high degree of vulnerability in HD.  相似文献   

15.
Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico‐striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the extensive research and literature on the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity of the cortico‐striatal synapse, very little is known about the role of striatal cholinergic interneurons in normal and pathological control of cortico‐striatal transmission. In this review, we address the functional role of striatal cholinergic interneurons, also known as tonically active neurons and attempt to understand how the alteration of their functional properties in basal ganglia disorders leads to abnormal cortico‐striatal synaptic plasticity. Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal, which enables long‐term changes in the efficacy of the cortico‐striatal synapse. We further discuss how modifications in the striatal cholinergic activity pattern alter or prohibit plastic changes of the cortico‐striatal synapse. Long‐term cortico‐striatal synaptic plasticity is the cellular substrate of procedural learning and adaptive control behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients with basal ganglia disorders to adjust their behavior to situational demands. Normalization of the cholinergic modulation of cortico‐striatal synaptic plasticity may be considered as a critical feature in future treatments of basal ganglia disorders. © 2015 International Parkinson and Movement Disorder Society  相似文献   

16.
Two different forms of synaptic plasticity have been found at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Striatal LTD and LTP are evoked following the repetitive stimulation of corticostriatal fibers and are dependent on the glutamate ionotropic receptor subtype activated. Recent experimental evidence indicates that two different subtypes of interneurons attend in the correct processing of information flow arising from the cortex and leading to striatal LTD or LTP. Acetylcholine (Ach) and nitric oxide (NO) producing striatal interneurons, in fact, are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exerts a feed-forward control of the excitability of striatal projection neurons ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse.  相似文献   

17.
Cholinergic striatal interneurons play a crucial role in cognitive aspects of context-dependent motor behaviours. They are considered to correspond to the tonically active neurons (TANs) of the primate striatum, which phasically decrease their discharge at the presentation of reward-related sensory stimuli. The origin of this response is still poorly understood. Therefore, in the present paper, we have investigated whether synaptic changes establish in cholinergic interneurons from young rats that have learned a rewarded, externally cued sensorimotor task. Corticostriatal slices were prepared from both control and trained rats. No significant change in intrinsic membrane properties and evoked synaptic activity was observed in cholinergic interneurons, nor the responsiveness to exogenously applied dopaminergic and glutamatergic agonists was modified. Conversely, an increased occurrence of spontaneous bicuculline-sensitive depolarizing postsynaptic potentials (sDPSP) was recorded. The frequency of the GABAA-mediated sDPSP was increased in comparison to not-conditioned rats. Overall, these results suggest that after learning a rewarded sensorimotor paradigm an increased GABA influence develops on cholinergic interneurons. The origin of this effect might be searched in collaterals of GABAergic output spiny neurons as well as in GABAergic striatal interneurons impinging onto cholinergic interneurons. This intrastriatal mechanism might be involved in the phasic suppression of discharge of TANs at the presentation of reward-related sensory stimuli.  相似文献   

18.
Homozygous or compound heterozygous mutations in the phosphatase and tensin homolog‐induced putative kinase 1 (PINK1) gene are causative of autosomal recessive, early onset Parkinson's disease. Single heterozygous mutations have been detected repeatedly both in a subset of patients and in unaffected individuals, and the significance of these mutations has long been debated. Several neurophysiological studies from non‐manifesting PINK1 heterozygotes have demonstrated the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. We performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knockout (PINK1+/?) mice using a multidisciplinary approach and observed that, despite normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long‐term potentiation (LTP), whereas long‐term depression was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, a significantly lower dopamine release was measured in the striatum of PINK1+/? mice compared with control mice, suggesting that a decrease in stimulus‐evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored normal LTP in heterozygous mice. Moreover, monoamine oxidase B inhibitors rescued physiological LTP and normal dopamine release. Our results provide novel evidence for striatal plasticity abnormalities, even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of Parkinson's disease and a valid tool with which to characterize early disease stage and design possible disease‐modifying therapies. © 2013 International Parkinson and Movement Disorder Society  相似文献   

19.
An impaired complex II (succinate dehydrogenase, SD) striatal mitochondrial activity is one of the prominent metabolic alterations in Huntington's disease (HD), and intoxication with 3-nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, mimics the motor abnormalities and the pathology of HD. We found that striatal spiny neurons responded to this toxin with an irreversible membrane depolarization/inward current, while cholinergic interneurons showed a hyperpolarization/outward current. Both these currents were sensitive to intracellular concentration of ATP. The 3-NP-induced depolarization was associated with an increased release of endogenous GABA, while acetylcholine levels were reduced. Moreover, 3-NP induced a higher depolarization in presymptomatic R6/2 HD transgenic mice compared to wild-type (WT) mice, showing an increased susceptibility to SD inhibition. Conversely, the hyperpolarization did not significantly differ from the one recorded in WT mice. The diverse membrane changes induced by SD inhibition may contribute to the cell-type-specific neuronal death in HD.  相似文献   

20.
Changing the strength of synaptic connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. Plastic changes appear to follow a regional specialization and underlie the specific type of memory mediated by the brain area in which plasticity occurs. Thus, long-term changes occurring at excitatory corticostriatal synapses should be critically involved in motor learning. Indeed, repetitive stimulation of the corticostriatal pathway can cause either a long-lasting increase or an enduring decrease in synaptic strength, respectively referred to as long-term potentiation (LTP), and long-term depression, both requiring a complex sequence of biochemical events. Once established, LTP can be reversed to control levels by a low-frequency stimulation protocol, an active phenomenon defined "synaptic depotentiation," required to erase redundant information. In the 6-hydroxydopamine rat model of Parkinson's disease (PD), striatal synaptic plasticity has been shown to be impaired, although chronic treatment with levodopa was able to restore it. Of interest, a consistent number of L-dopa-treated animals developed involuntary movements, resembling human dyskinesias. Strikingly, electrophysiological recordings from the dyskinetic group of rats demonstrated a selective impairment of synaptic depotentiation. This survey will provide an overview of plastic changes occurring at striatal synapses. The potential relevance of these findings in the control of motor function and in the pathogenesis both of PD and L-dopa-induced motor complications will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号