首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6?µm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

2.
Background: Alginate is commonly used to microencapsulate islets in experiments with islet allografts and xenografts for the treatment of Type I diabetes. The purpose of the present study is to determine the effects of alginate composition and purity on the morphology and size of microspheres. Methods: Microcapsules produced with the impure alginate types, medium-viscosity high-guluronic acid (IMVG), low-viscosity high-G (ILVG), low-viscosity high-mannuronic acid (ILVM) and medium-viscosity high-M (IMVM) were compared with one another and others generated with a highly purified LVM (HPLVM) alginate. Droplets of 1.5% alginate from an air-syringe pump were gelled in 1.1% CaCl2 solution. While leaving the alginate pressure and needle recess constant, the air-jacket pressure was varied between 9.5–10.5 PPSI to enhance stable microcapsule generation and different batches of microbeads were made from each alginate type. Results: The sizes of the high-guluronic acid alginate microbeads were consistently bigger than those of the corresponding high-mannuronic acid alginate beads at all air-jacket settings. At the optimal air-jacket pressure of 9.0 PPSI, the mean+SD diameter of the IMVG microbeads was 780+20?µm, while that of IMVM was 607+44?µm (p<0.0001, n?=?30). Similarly, the mean ILVG microbead diameter was 816+28 µm compared to 656+26?µm for ILVM capsules (p<0.0001, n?=?30). Less polymorphism was found with the HPLVM microspheres than with the ILVM microbeads. Conclusion: Highly purified high-mannuronic acid alginate will provide smaller, spherical microcapsules suitable for islet cell transplantation.  相似文献   

3.
Effect of alginate composition and purity on alginate microspheres   总被引:1,自引:0,他引:1  
BACKGROUND: Alginate is commonly used to microencapsulate islets in experiments with islet allografts and xenografts for the treatment of Type I diabetes. The purpose of the present study is to determine the effects of alginate composition and purity on the morphology and size of microspheres. METHODS: Microcapsules produced with the impure alginate types, medium-viscosity high-guluronic acid (IMVG), low-viscosity high-G (ILVG), low-viscosity high-mannuronic acid (ILVM) and medium-viscosity high-M (IMVM) were compared with one another and others generated with a highly purified LVM (HPLVM) alginate. Droplets of 1.5% alginate from an air-syringe pump were gelled in 1.1% CaCl2 solution. While leaving the alginate pressure and needle recess constant, the air-jacket pressure was varied between 9.5-10.5 PPSI to enhance stable microcapsule generation and different batches of microbeads were made from each alginate type. RESULTS: The sizes of the high-guluronic acid alginate microbeads were consistently bigger than those of the corresponding high-mannuronic acid alginate beads at all air-jacket settings. At the optimal air-jacket pressure of 9.0 PPSI, the mean+SD diameter of the IMVG microbeads was 780 + 20 microm, while that of IMVM was 607 + 44 microm (p < 0.0001, n=30). Similarly, the mean ILVG microbead diameter was 816+28 microm compared to 656+26 microm for ILVM capsules (p<0.0001, n=30). Less polymorphism was found with the HPLVM microspheres than with the ILVM microbeads. CONCLUSION: Highly purified high-mannuronic acid alginate will provide smaller, spherical microcapsules suitable for islet cell transplantation.  相似文献   

4.
目的制备低分子肝素聚乳酸-羟基乙酸(LWMH-PLGA)缓释微球,观察微球表面形态,检测微球物理性能和体外释药行为。方法采用W1/O/W2复乳溶剂挥发法制作微球;通过扫描电镜观察微球的表面形态结构;利用天青A比色法测试微球中药物的载药量和包封率,并对微球中药物的体外释放行为进行研究。结果微球表面显现较多的孔隙,平均粒径为(2.55±0.94)μm,载药量为(14.79±1.03)%,包封率为(55.7±2.21)%;48 h的体外释放试验表明,LWMH累积释放率达到40%。结论 LWMH-PLGA微球能够稳定地释放药物LWMH,验证了PLGA微球作为LWMH控制释放载体的可行性。  相似文献   

5.
In this paper a device, based on urease-loaded microspheres, is presented. The first task of this work was the optimization of a procedure for the alginate microspheres realization, having a radius as close as possible to the optimal one necessary to achieve the maximum enzyme exploitation. This optimal radius was calculated theoretically through a mathematical model which describes the concentration of substrate (urea) inside the microspheres on the assumption of a diffusion-reaction mechanism. The enzyme-loaded microspheres were successfully tested in a prototypal device aimed at the depletion of urea from a circulating fluid simulating blood flow: the results showed that urea concentration in the circulating fluid drops down to less than 25% of the initial value after 5 h.  相似文献   

6.
多柔比星海藻酸钙微球的制备及其载药、释药性质的研究   总被引:5,自引:0,他引:5  
目的:考察多柔比星海藻酸钙微球的制备工艺及载药、释药性质。方法:考察不同处方微球的粒径、机械强度、降解等性质,筛选出最佳处方;以多柔比星为模型药物研究其对药物的承载能力及体外释药特性。结果:制备的微球圆整且分散性好,粒径均匀。多柔比星海藻酸钙微球的载药量达30%以上,包封率在90%以上;在体外37℃生理氯化钠溶液中释放显示具有缓释作用。结论:该微球对多柔比星具有较高的承载能力,并有较好的缓释作用,可满足临床治疗动脉栓塞需要。  相似文献   

7.
In this paper a device, based on urease-loaded microspheres, is presented. The first task of this work was the optimization of a procedure for the alginate microspheres realization, having a radius as close as possible to the optimal one necessary to achieve the maximum enzyme exploitation. This optimal radius was calculated theoretically through a mathematical model which describes the concentration of substrate (urea) inside the microspheres on the assumption of a diffusion-reaction mechanism. The enzyme-loaded microspheres were successfully tested in a prototypal device aimed at the depletion of urea from a circulating fluid simulating blood flow: the results showed that urea concentration in the circulating fluid drops down to less than 25% of the initial value after 5 h.  相似文献   

8.
This study focused on the properties of diclofenac sodium (DNa) alginate (alg) microspheres and tabletted DNa alg microspheres using different polymers as additives. DNa alginate microspheres were prepared by the emulsification method and different polymers such as Eudragit (Eud) NE 30 D, Eudragit (Eud) RS 30 D and Aquacoat, which were incorporated into alg gel to control the release rate of drug. The release properties of DNa alg microspheres (1:1) were affected by the size, drug load of microspheres and also by the incorporated polymers, pH and ionic strength of dissolution medium. Tabletting of alg microspheres using carrageenan (carr), alg, pectin, NaCMC, tragacanth (trgh) and HPMC as additives in a (50:50) ratio produced tablets with good physical properties and also better controlled release of DNa. Dissolution studies were carried out in pH7.2 phosphate buffer and phosphate buffers whose pH values were gradually changed from pH 3 to 7.4. The rank order of DNa release from tablets was carr<alg<pectin<NaCMC<trgh<HPMC which relates to the viscosity and swelling properties of polymers. The drug release was very slow from trgh and HPMC based tablets, but addition of carr or alg in different ratios could adjust the release rate of drug.  相似文献   

9.
This study focused on the properties of diclofenac sodium (DNa) alginate (alg) microspheres and tabletted DNa alg microspheres using different polymers as additives. DNa alginate microspheres were prepared by the emulsification method and different polymers such as Eudragit (Eud) NE 30 D, Eudragit (Eud) RS 30 D and Aquacoat, which were incorporated into alg gel to control the release rate of drug. The release properties of DNa alg microspheres (1:1) were affected by the size, drug load of microspheres and also by the incorporated polymers, pH and ionic strength of dissolution medium. Tabletting of alg microspheres using carrageenan (carr), alg, pectin, NaCMC, tragacanth (trgh) and HPMC as additives in a (50:50) ratio produced tablets with good physical properties and also better controlled release of DNa. Dissolution studies were carried out in pH 7.2 phosphate buffer and phosphate buffers whose pH values were gradually changed from pH 3 to 7.4. The rank order of DNa release from tablets was carr < alg < pectin < NaCMC < trgh < HPMC which relates to the viscosity and swelling properties of polymers. The drug release was very slow from trgh and HPMC based tablets, but addition of carr or alg in different ratios could adjust the release rate of drug.  相似文献   

10.
Alginate and alginate-hydroxypropylmethylcellulose (HPMC) microspheres were prepared by the emulsification method. The compaction of microspheres for producing tablet dosage forms raises concerns about possible damage to microsphere walls with subsequent unpredictable dissolution rates. The effect of different compaction pressures on the integrity of the microspheres was investigated. The addition of a diluent, microcrystalline cellulose (MCC), was required to make compacts containing alginate and alginate-HPMC microspheres. Compacts containing alginate-HPMC (7:3) microspheres had the highest crushing strength followed by compacts containing alginate-HPMC (9:1) microspheres and alginate microspheres. However, compact crushing strength did not vary significantly with increased compaction pressures over the range of compaction pressures investigated. Differences in the drug release profiles of the original non-compacted and compacted alginate and alginate-HPMC microspheres were slight and not marked. Although dentation and distortion of the microspheres were observed with increasing compaction pressures, the microspheres generally remained intact, with minimal rupture/fracture.  相似文献   

11.
Drug encapsulation in alginate microspheres by emulsification.   总被引:3,自引:0,他引:3  
A method based on an emulsification process was developed for the production of calcium alginate microspheres. Isopropyl alcohol and acetone, which are strong dehydrating agents, were used to aid in the hardening and drying of the microspheres. However, the amount of drug encapsulated was very low. This was due to the drug being soluble in the dehydrating solvents. In the absence of the solvents a high percentage of drug was encapsulated, and this was further increased by forming the microspheres by phase inversion. It was also found that a suspension of the drug particles was required for effective microencapsulation. The efficiency of drug encapsulation generally increased with the ratio of drug to encapsulating material. The microspheres produced were free-flowing and most of them were smaller than 150 microns.  相似文献   

12.
This study investigated the formative process of alginate microspheres produced using an emulsification technique. The alginate microspheres were produced by cross-linking alginate globules dispersed in a continuous organic phase using various calcium salts: calcium chloride, calcium acetate, calcium lactate and calcium gluconate. The size, shape, drug content and Ca2+ content of the microspheres were evaluated. The tack, viscosity and pH of the calcium salt solution and percentage of Ca2+ partitioned into the organic phase were determined. Microscopic examination of the test emulsion at various stages of the emulsification process was also carried out. The propensity of cross-linking reaction was found to be dependent on successful collision between alginate and calcium salt globules. Examination of the characteristics of microspheres indicated that the formed microsphere was a resultant product of alginate globule clustering. The growth propensity of microspheres was promoted by the higher rate and extent of cross-linkage which was governed by the pH, tack and/or Ca2+ content of the cross-linking solution, as well as the dissociation constant and diffusivity of the calcium salt. Overall, the amount of free Ca2+ cross-linked with alginate in the formed microspheres was in the following order: calcium acetate > calcium chloride + calcium acetate > calcium chloride + calcium gluconate; calcium chloride + calcium lactate > calcium chloride. In microencapsulation by emulsification, the mean size of the microspheres produced can be modified by varying the tack, pH and Ca2+ content of the cross-linking solution and through the use of a combination of calcium salts. The shape of the microspheres produced was, nonetheless, unaffected by the physicochemical properties of the cross-linking solution.  相似文献   

13.
This study investigated the formative process of alginate microspheres produced using an emulsification technique. The alginate microspheres were produced by cross-linking alginate globules dispersed in a continuous organic phase using various calcium salts: calcium chloride, calcium acetate, calcium lactate and calcium gluconate. The size, shape, drug content and Ca2+ content of the microspheres were evaluated. The tack, viscosity and pH of the calcium salt solution and percentage of Ca2+ partitioned into the organic phase were determined. Microscopic examination of the test emulsion at various stages of the emulsification process was also carried out. The propensity of cross-linking reaction was found to be dependent on successful collision between alginate and calcium salt globules. Examination of the characteristics of microspheres indicated that the formed microsphere was a resultant product of alginate globule clustering. The growth propensity of microspheres was promoted by the higher rate and extent of cross-linkage which was governed by the pH, tack and/or Ca2+ content of the cross-linking solution, as well as the dissociation constant and diffusivity of the calcium salt. Overall, the amount of free Ca2+ cross-linked with alginate in the formed microspheres was in the following order: calcium acetate > calcium chloride + calcium acetate > calcium chloride + calcium gluconate; calcium chloride + calcium lactate > calcium chloride. In microencapsulation by emulsification, the mean size of the microspheres produced can be modified by varying the tack, pH and Ca2+ content of the cross-linking solution and through the use of a combination of calcium salts. The shape of the microspheres produced was, nonetheless, unaffected by the physicochemical properties of the cross-linking solution.  相似文献   

14.
Alginate and alginate-hydroxypropylmethylcellulose (HPMC) microspheres were prepared by the emulsification method. The compaction of microspheres for producing tablet dosage forms raises concerns about possible damage to microsphere walls with subsequent unpredictable dissolution rates. The effect of different compaction pressures on the integrity of the microspheres was investigated. The addition of a diluent, microcrystalline cellulose (MCC), was required to make compacts containing alginate and alginate-HPMC microspheres. Compacts containing alginate-HPMC (7:3) microspheres had the highest crushing strength followed by compacts containing alginate-HPMC (9:1) microspheres and alginate microspheres. However, compact crushing strength did not vary significantly with increased compaction pressures over the range of compaction pressures investigated. Differences in the drug release profiles of the original non-compacted and compacted alginate and alginate HPMC microspheres were slight and not marked. Although dentation and distortion of the microspheres were observed with increasing compaction pressures, the microspheres generally remained intact, with minimal rupture/fracture.  相似文献   

15.
Spherical and discrete calcium alginate microspheres had been produced by the emulsification technique. The microencapsulation process was highly efficient, but drug release from microspheres was rapid. A more orderly chain arrangement of the polymeric chains would give rise to a stronger and less permeable matrix capable of sustaining drug release. Therefore, the potential of using partially cross-linked alginate in the production of microspheres by emulsification was explored. The size and roundness of the microspheres, its drug content and drug release property were determined. The more viscous alginate solutions when reacted with more calcium salt added resulted in larger microspheres produced. Microspheres made from partially cross-linked alginate exhibited lower drug content and higher T75% values in drug release studies. This was due to decreased flexibility of the polymer chains which were partially held together by calcium ions, reducing subsequent interaction with the calcium ions resulting in lower drug entrapment efficiency and a more permeable microsphere matrix.  相似文献   

16.
An important application of hepatocyte cultures is identification of drugs acting as inducers of biotransformation enzymes that alter metabolic clearance of other therapeutic agents. In the present study we optimized an in vitro system with hepatocytes cultured in alginate microspheres that allow studies of enzyme induction with excellent sensitivity. Induction factors obtained with standard inducers, such as 3-methylcholanthrene or phenobarbital, were higher compared to those with conventional hepatocyte co-cultures on collagen coated dishes. This is illustrated by activities of 7-ethoxyresorufin-O-deethylase (EROD) after incubation with 5 microM 3-methylcholanthrene (3-MC), a standard inducer for cytochrome P4501A1 and 1A2. Mean activities for solvent controls and 3-MC exposed cells were 2.99 and 449 pmol/min/mg protein (induction factor: 150) for hepatocytes cultured in microspheres compared to 2.72 and 80.6 pmol/min/mg (induction factor: 29.6) for hepatocytes on collagen coated dishes. To compare these in vitro data to the in vivo situation male Sprague Dawley rats, the same strain that was used also for the in vitro studies, were exposed to 3-MC in vivo using a protocol that guarantees maximal induction. Activities were 29.2 and 1656 pmol/min/mg in liver homogenate of solvent and 3-MC treated animals (induction factor: 56.7). Thus, the absolute activities of 3-MC exposed hepatocytes in microspheres are lower compared to the in vivo situation. However, the induction factor in vitro was even higher compared to the in vivo situation (150-fold versus 56.7-fold). A similar scenario was observed using phenobarbital (0.75 mM) for induction of CYP2B and 3A isoenzymes: induction factors for testosterone hydroxylation in position 16beta were 127.5- and 50.4-fold for hepatocytes in microspheres and conventionally cultured hepatocytes, respectively. The new in vitro system with hepatocytes embedded in solid alginate microspheres offers several technical advantages: (i) the solid alginate microspheres can be liquefied within 60s, allowing a fast and complete harvest of hepatocytes; (ii) alginate capsules are stable allowing transport and mechanical stress; (iii) high numbers of hepatocytes can be encapsulated in short periods; (iv) defined cell numbers between 600 hepatocytes, the approximate number of cells in one capsule, and 18 x 10(6) hepatocytes, the number of hepatocytes in 6 ml alginate, can be transferred to a culture dish or flask. Thus, encapsulated hepatocytes allow a flexible organization of experiments with respect to cell number. In conclusion, we optimized a technique for encapsulation of hepatocytes in alginate microspheres that allows identification of enzyme induction with an improved sensitivity compared to existing systems.  相似文献   

17.
Alginate-based hydrogels have several unique properties that have enabled them to be used as a matrix for the entrapment of a variety of enzymes, proteins and cells for applications in bioprocessing, drug delivery and chemical sensing. However, control over release rates or, in some cases, stable encapsulation remains a difficult goal, especially for small particles with high surface-area-to-volume ratios. In this work, the potential to limit diffusion of macromolecules embedded in alginate spheres with nanofilm coatings was assessed. Alginate microspheres were fabricated using an emulsification process with high surfactant concentration to form beads in the size range of 2-10 microm. Using calcium chloride for ionotropic gelation, dextran was encapsulated in the gel phase by mixing with the alginate in solution. The exterior surface was then modified with polyelectrolyte coatings using the layer-by-layer self assembly technique. Leaching studies to assess retention of dextran with varying molecular weights confirmed that the application of multi-layer thin films to the alginate microspheres was effective in reducing leaching rate and total loss of the encapsulated material from the microspheres. For the best case, the rate of release for dextran of 2,000,000 Dalton molecular weight decreased from 1% h(-1) in bare microspheres to 0.1% h(-1) in polyelectrolyte-coated microspheres. The effectiveness of nanofilms reducing loss of the encapsulated macromolecules was found to vary between different polycation materials used. These studies support the feasibility of using these microsystems for development of long-term stable encapsulated systems, such as implantable biosensors.  相似文献   

18.
Abstract

Trypsin microencapsulated in a calcium alginate matrix was lost quickly through diffusion when the microspheres were placed in an aqueous medium. This problem was overcome by first reacting trypsin with glutaraldehyde to form cross-linkages and then incorporating the enzyme in the alginate micro-spheres. The performance of the cross-linked trypsin remained optimal at pH 8 while it was found to be more heat-stable and remained highly active even at 80°C. Esters and amides of L-arginine were preferentially hydrolysed by the enzyme indicating that cross-linking did not adversely affect the conformation of the active site. There was a suppression in enzymatic activity when the microspheres were placed in reaction media with an increasing concentration of organic solvent such as ethanol, acetonitrile or isopropanol. However, when returned to a totally aqueous environment, the enzyme resumed its initial tryptic capability. Such a microencapsulated form of cross-linked enzyme may find application in enzyme replacement therapy, optical resolution of racemic compounds as well as organic synthesis in an aqueous-organic environment.  相似文献   

19.
Chitosan-coated alginate microspheres containing a lipophilic marker dissolved in an edible oil, were prepared by emulsification/internal gelation and the potential use as an oral controlled release system investigated. Microsphere formation involved dispersing a lipophilic marker dissolved in soybean oil into an alginate solution containing insoluble calcium carbonate microcrystals. The dispersion was then emulsified in silicone oil to form an O/W/O multiple phase emulsion. Addition of an oil soluble acid released calcium from carbonate complex for gelation of the alginate. Chitosan was then applied as a membrane coat to increase the mechanical strength and stabilize the microspheres in simulated intestinal media. Parameters studied included encapsulation yield, alginate concentration, chitosan molecular weight and membrane formation time. Mean diameters ranging from 500 to 800 micron and encapsulation yields ranging from 60 to 80% were obtained. Minimal marker release was observed under simulated gastric conditions, and rapid release was triggered by transfer into simulated intestinal fluid. Higher overall levels of release were obtained with uncoated microspheres, possibly due to binding of marker to the chitosan membrane coat. However the slower rate of release from coated microspheres was felt better suited as a delivery vehicle for oil soluble drugs.  相似文献   

20.
The effects of alginate coated on tetracycline (Tc) loaded poly (D, L-lactic-co-glycolic acid) (PLGA) microspheres fabricated by double emulsion solvent evaporation technique for local delivery to periodontal pocket were investigated. Alginate coated PLGA microspheres showed smoother surface but enlarged their particle sizes compared with those of uncoated ones. In addition, alginate coated microspheres enhanced Tc encapsulation efficiency (E.E.) from 11.5?±?0.5% of uncoated ones to 17.9?±?0.5%. Moreover, all of the coated PLGA microspheres even fabricated at different conditions could prolong Tc release from 9–12 days with 50% or higher in cumulative release of Tc compared with those of uncoated ones. The swelling ratios of PLGA microspheres for alginate coated or uncoated ones, one of the possible mechanisms for enhancing Tc release for the coated ones, were measured. The results showed that 20% or higher in swelling ratio for the coated microspheres at the earlier stage of hydration (e.g.?≤?24?h) could be an important factor to result in high Tc release compared to the uncoated ones. In conclusion, alginate coated Tc loaded PLGA microspheres could enhance Tc delivery to periodontal pocket by enhancing drug encapsulated efficiency, released quantities and sustained release period compared with uncoated ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号