首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Characterization of human iodothyronine sulfotransferases   总被引:4,自引:0,他引:4  
Sulfation is an important pathway of thyroid hormone metabolism that facilitates the degradation of the hormone by the type I iodothyronine deiodinase, but little is known about which human sulfotransferase isoenzymes are involved. We have investigated the sulfation of the prohormone T4, the active hormone T3, and the metabolites rT3 and 3,3'-diiodothyronine (3,3'-T2) by human liver and kidney cytosol as well as by recombinant human SULT1A1 and SULT1A3, previously known as phenol-preferring and monoamine-preferring phenol sulfotransferase, respectively. In all cases, the substrate preference was 3,3'-T2 > rT3 > T3 > T4. The apparent Km values of 3,3'-T2 and T3 [at 50 micromol/L 3'-phosphoadenosine-5'-phosphosulfate (PAPS)] were 1.02 and 54.9 micromol/L for liver cytosol, 0.64 and 27.8 micromol/L for kidney cytosol, 0.14 and 29.1 micromol/L for SULT1A1, and 33 and 112 micromol/L for SULT1A3, respectively. The apparent Km of PAPS (at 0.1 micromol/L 3,3'-T2) was 6.0 micromol/L for liver cytosol, 9.0 micromol/L for kidney cytosol, 0.65 micromol/L for SULT1A1, and 2.7 micromol/L for SULT1A3. The sulfation of 3,3'-T2 was inhibited by the other iodothyronines in a concentration-dependent manner. The inhibition profiles of the 3,3'-T2 sulfotransferase activities of liver and kidney cytosol obtained by addition of 10 micromol/L of the various analogs were better correlated with the inhibition profile of SULT1A1 than with that of SULT1A3. These results indicate similar substrate specificities for iodothyronine sulfation by native human liver and kidney sulfotransferases and recombinant SULT1A1 and SULT1A3. Of the latter, SULT1A1 clearly shows the highest affinity for both iodothyronines and PAPS, but it remains to be established whether it is the prominent isoenzyme for sulfation of thyroid hormone in human liver and kidney.  相似文献   

2.
Sulfotransferases (SULTs) catalyze the sulfation of many endogenous compounds that include monoamine neurotransmitters, such as dopamine (DA), and thyroid hormones (iodothyronines). Decarboxylation of iodothyronines results in formation of thyronamines. In the mouse, thyronamines act rapidly in a nongenomic fashion to initiate hypothermia and decrease cardiac output and heart rate. These effects are attenuated after 1-4 h, and metabolism of thyronamines via sulfation may be a mechanism for termination of thyronamine action. We carried out this study to test thyronamine (T0AM), 3-iodothyronamine (T1AM), 3,5-diiodothyronamine (T2AM), and 3,5,3'-triiodothyronamine (T3AM) as substrates for human liver and cDNA-expressed SULT activities. We characterized several biochemical properties of SULTs using the thyronamines that acted as substrates for SULT activities in a human liver high-speed supernatant pool (n=3). T1AM led to the highest SULT activity. Activities with T0AM and T3AM were 10-fold lower, and there was no detectable activity with T2AM. Thyronamines were then tested as substrates with eight cDNA-expressed SULTs (1A1, 1A2, 1A3, 1C2, 1E1, 2A1, 2B1a, and 2B1b). Expressed SULT1A3 had the greatest activity with T0AM, T1AM, and T3AM, whereas SULT1A1 showed similar activity only with T3AM. Expressed SULT1E1 had low activity with each substrate. T1AM, the most active thyronamine pharmacologically, was associated with the greatest SULT activity of the thyronamines tested in the liver pool and in both the expressed SULT1A3 and SULT1E1 preparations. Our results support the conclusion that sulfation contributes to the metabolism of thyronamines in human liver and that SULT activities may regulate the physiological effects of endogenous thyronamines.  相似文献   

3.
Protection against chemical insult is essential for normal development of the fetus, however many detoxification enzymes are poorly expressed during fetal development. A major exception is the sulfotransferase (SULT) family, which appears to be widely expressed in the developing human. These enzymes also play a key role in biosynthesis and homeostasis of a number of hormones, including estrogens and iodothyronines. We therefore examined the enzyme activity, protein and mRNA expression of SULT 1A, 1B, 1C, 1E and 2A families in a variety of human fetal and adult tissues. Our results show that these SULTs are expressed in the human fetus, with most present at levels equivalent to or higher than the adult. As there are no isoform-selective substrates for SULTs 1B1 and 1C2 we used immunoblot analysis to show for the first time expression of SULT1B1 at high levels in fetal small intestine, and expression of SULT1C2 in fetal liver, kidney and small intestine. SULT1C2 was not expressed in adult liver or colon. Sulfotransferase expression in the developing fetus is therefore more widespread than in the adult, and this has significant implication for our understanding of human developmental physiology.  相似文献   

4.
Sulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferase (SULT1E1) is expressed among other tissues in the uterus. Here we demonstrate for the first time that SULT1E1 catalyzes the facile sulfation of the prohormone T4, the active hormone T3 and the metabolites rT3 and 3,3'-diiodothyronine (3,3'-T2) with preference for rT3 approximately 3,3'-T2 > T3 approximately T4. Thus, a single enzyme is capable of sulfating two such different hormones as the female sex hormone and thyroid hormone. The potential role of SULT1E1 in fetal thyroid hormone metabolism needs to be considered.  相似文献   

5.
Sulfation by sulfotransferase enzymes (SULTs) is an important pathway for the metabolism of thyroid hormones and phytoestrogens. Intrathyroidal SULTs may contribute to the processing of thyroid hormones for the reutilization of iodide. SULT1A1 and SULT1A3 activities were identified in normal and diseased human thyroid glands. Biochemical properties that included apparent K(m) values, thermal stabilities, and responses to inhibitors were characterized in a normal human thyroid high speed supernatant pool. Apparent K(m) values for SULT1A1 and SULT1A3 activities with the model substrates p-nitrophenol and dopamine were 0.58 +/- 0.04 and 11.3 +/- 1.3 microm, respectively. Activities of SULT1A1 and SULT1A3 determined in individual normal thyroid (n = 35), nodular goiter (n = 26), and autoimmune thyroid disease (n = 25) glands were 0.34 +/- 0.06, 0.52 +/- 0.09, and 0.82 +/- 0.19 U/mg protein for SULT1A1, respectively, and 0.22 +/- 0.04, 0.21 +/- 0.04, and 0.48 +/- 0.11 U/mg protein for SULT1A3, respectively. Both SULT activities in autoimmune thyroid disease glands were significantly higher than those in normal thyroids. Only 3,3'-diiodothyronine (3,3'-T(2)) and the phytoestrogen daidzein served as substrates for the normal thyroid SULT activities, yet each thyroid hormone and phytoestrogen tested were found to inhibit thyroid SULT1A1 and SULT1A3 activities. The preference of thyroid gland SULT activities for 3,3'-T(2) suggests that sulfation may enhance degradation of intrathyroidal 3,3'-T(2) for iodide reutilization. Inhibition of these SULT activities by the exogenous phytoestrogens daidzein and genistein, with a potential decrease in iodide reutilization, presents another mechanism through which these compounds may adversely affect human thyroid function.  相似文献   

6.
Sulfotransferase 1A1 (SULT1A1) (thermostable phenol sulfotransferase, TS PST1, P-PST) is important in the metabolism of thyroid hormones. SULT1A1 isolated from human platelets displays wide individual variations not only in the levels of activity, but also in thermal stability. The activity of the allelic variant or allozyme SULT1A1*1, which possesses an arginine at amino acid position 213 (Arg213) has been shown to be more thermostable than the activity of the SULT1A1*2 allozyme which possesses a histidine at this position (His213) when using p-nitrophenol as the substrate. We isolated a SULT1A1*1 cDNA from a human liver cDNA library and expressed both SULT1A1*1 and SULT1A1*2 in eukaryotic cells. The allozymes were assayed using iodothyronines as the substrates and their biochemical properties were compared. SULT1A1*1 activity was more thermostable and more sensitive to NaCl than was SULT1A1*2 activity when assayed with 3,5,3'-triiodothyronine (T(3)). Sensitivities to 2,6-dichloro-4-nitrophenol (DCNP) and apparent K(m) values for SULT1A1*1 and for SULT1A1*2 with iodothyronines were similar. Based on K(m) values, the preferences of these SULT1A1 allozymes for iodothyronine substrates were the same (3,3'-diiodothyronine (3,3'-T(2))>3', 5',3-triiodothyronine (rT(3))>T(3)>thyroxine (T(4))>3,5-diiodothyronine (3,5-T(2))). SULT1A1*1 activity was significantly higher than the SULT1A1*2 activity with T(3) as the substrate. Potential differences in thyroid hormone sulfation between individuals with predominant SULT1A1*1 versus SULT1A1*2 allozymes are most likely due to differences in catalytic activity rather than substrate specificity.  相似文献   

7.
In vertebrates, sulfation as catalyzed by members of the cytosolic sulfotransferase (SULT) family has been suggested to be involved in the homeostasis of steroids. To establish the zebrafish as a model for investigating how sulfation functions to regulate steroid metabolism during the developmental process, we have embarked on the identification of steroid-sulfating SULTs in zebrafish. By searching the GenBank database, we identified two putative cytosolic SULT sequences from zebrafish, designated SULT3 ST1 and ST2. The recombinant proteins of these two zebrafish SULT3 STs were expressed in and purified from BL21 (DE3) cells transformed with the pGEX-2TK expression vector harboring SULT3 ST1 or ST2 cDNA. Upon enzymatic characterization, purified SULT3 ST1 displayed the strongest sulfating activity toward 17beta-estradiol among the endogenous substrates tested, while SULT3 ST2 exhibited substrate specificity toward hydroxysteroids, particularly dehydroepiandrosterone (DHEA). The pH-dependence and kinetic constants of these two enzymes with 17beta-estradiol and DHEA were determined. A developmental expression study revealed distinct patterns of the expression of SULT3 ST1 and ST2 during embryonic development and throughout the larval stage onto maturity. Collectively, these results imply that these two steroid-sulfating SULT3 STs may play differential roles in the metabolism and regulation of steroids during zebrafish development and in adulthood.  相似文献   

8.
Sulfation is an important mechanism for regulating the biological activity of numerous hormones and neurotransmitters in man. Here we have investigated the ontogeny of sulfotransferases (SULT) and sulfatase (ARS) involved in the metabolism of thyroid hormone and dopamine. SULT1A1 enzyme activity was lower in postnatal liver and lung than in fetal tissues. Hepatic SULT1A3 (dopamine) was expressed at high levels early in development, but decreased substantially in late fetal/early neonatal liver and was essentially absent from the adult liver. In lung, significant SULT1A3 activity was observed in the fetus, but neonatal levels were considerably lower. In brain, the highest activity was observed in the choroid plexus for SULT1A1, with low and widespread activity for both SULT1A1 and SULT1A3 in other brain regions. SULT activity with 3,3'-diiodothyronine (3,3'-T(2)) as substrate was measured in all tissues and correlated significantly with SULT1A1 activity (4-nitrophenol), suggesting that SULT1A1 is primarily responsible for the sulfation of this iodothyronine. The developmental expression of SULT1A3 and SULT1A1 in liver and brain was confirmed by immunoblot, and immunohistochemistry of developing liver showed substantial expression of these proteins in hemopoietic cells in fetal liver. We also detected low activity for the hydrolysis of 3,3'-T(2) sulfate by ARS, although there was less distinction between fetal and neonatal samples than with SULT activities. We have therefore shown that the developing fetus has substantial sulfation capacity. Sulfation may therefore play a major role in the homeostasis of hormones and other endogenous compounds as well as in detoxification in the fetus, particularly as other conjugating enzyme systems, such as the UDP-glucuronosyltransferases, are not expressed at significant levels until the neonatal period.  相似文献   

9.
The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.  相似文献   

10.
Objective25-Hydroxycholesterol (25HC) and its sulfated metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), regulate certain aspects of lipid metabolism in opposite ways. Hence, the enzyme for the biosynthesis of 25HC3S, oxysterol sulfotransferase (SULT2B1b), may play a crucial role in regulating lipid metabolism. We evaluate the effect of 25HC sulfation on lipid metabolism by overexpressing the gene encoding SULT2B1b in human aortic endothelial cells (HAECs) in culture.Methods and resultsThe human SULT2B1b gene was successfully overexpressed in HAECs following infection using a recombinant adenovirus. HPLC analysis demonstrated that more than 50% of 3H-25HC was sulfated in 24 h following overexpression of the SULT2B1b gene. In the presence of 25HC, SULT2B1b overexpression significantly decreased mRNA and protein levels of LXR, ABCA1, SREBP-1c, ACC-1, and FAS, which are key regulators of lipid biosynthesis and transport; and subsequently reduced cellular lipid levels. Overexpression of the gene encoding SULT2B1b gave similar results as adding exogenous 25HC3S. However, in the absence of 25HC or in the presence of T0901317, synthetic liver oxysterol receptor (LXR) agonist, SULT2B1b overexpression had no effect on the regulation of key genes involved in lipid metabolism.ConclusionsOur data indicate that sulfation of 25HC by SULT2B1b plays an important role in the maintenance of intracellular lipid homeostasis via the LXR/SREBP-1c signaling pathway in HAECs.  相似文献   

11.
Some investigators have reported that there is minimal placental transport of thyroid hormones in humans and rats. Consequently, it was thought that thyroid hormones were not present in the fetal brain before fetal thyroid hormone synthesis and, hence, were not important for brain development before fetal thyroid hormonogenesis. Recently, however, thyroid hormones have been detected by 14 days postconception (dpc) in the rat fetus and by 11 dpc in the rat embryotrophoblast. Thyroid hormone receptors have been shown in the fetal rat by 14 dpc. The present experiments were designed to determine if T4, T3, and their metabolites can be detected in rat fetuses at 13 and 16 dpc and if iodothyronines are selectively accumulated in fetal brain and liver. Furthermore, one group of dams was radiothyroidectomized before breeding to ascertain the effect of maternal hypothyroxinemia on fetal tissue iodothyronine concentrations. Tissue iodothyronines were extracted and measured by HPLC. T4, T3, rT3, and 3,5-diiodothyronine were well within the limits of detection by this procedure at both fetal ages. The only possible source of these hormones is the mother. In addition, if maternal serum T4 levels are low, fetal tissue T4 and T3 levels are low. The presence of high intracellular T3 levels, even at 13 dpc, shows that 5'-monodeiodination occurs in the midgestational fetus. Intracellular hormone measurements show that T3, rather than rT3, is the predominant intracellular iodothyronine in the rat fetus. Both brain and liver selectively accumulate T4 and T3, supporting the observations of others that fetal thyroid hormone receptors are present in midgestation. The presence of thyroid hormones in fetal rat brain by 13 dpc coupled with the observation that hormone receptors are present by 14 dpc suggests that thyroid hormones do play a role in midgestational brain development. These data show that normal maternal serum thyroid hormone levels are important during midgestation to provide adequate thyroid hormones to the fetus.  相似文献   

12.
In conditions associated with high serum iodothyronine sulfate concentrations, e.g. during fetal development, desulfation of these conjugates may be important in the regulation of thyroid hormone homeostasis. However, little is known about which sulfatases are involved in this process. Therefore, we investigated the hydrolysis of iodothyronine sulfates by homogenates of V79 cells expressing the human arylsulfatases A (ARSA), B (ARSB), or C (ARSC; steroid sulfatase), as well as tissue fractions of human and rat liver and placenta. We found that only the microsomal fraction from liver and placenta hydrolyzed iodothyronine sulfates. Among the recombinant enzymes only the endoplasmic reticulum-associated ARSC showed activity toward iodothyronine sulfates; the soluble lysosomal ARSA and ARSB were inactive. Recombinant ARSC as well as human placenta microsomes hydrolyzed iodothyronine sulfates with a substrate preference for 3,3'-diiodothyronine sulfate (3,3'-T(2)S) approximately T(3) sulfate (T(3)S) > rT(3)S approximately T(4)S, whereas human and rat liver microsomes showed a preference for 3,3'-T(2)S > T(3)S > rT(3)S approximately T(4)S. ARSC and the tissue microsomal sulfatases were all characterized by high apparent K(m) values (>50 microM) for 3,3'-T(2)S and T(3)S. Iodothyronine sulfatase activity determined using 3,3'-T(2)S as a substrate was much higher in human liver microsomes than in human placenta microsomes, although ARSC is expressed at higher levels in human placenta than in human liver. The ratio of estrone sulfate to T(2)S hydrolysis in human liver microsomes (0.2) differed largely from that in ARSC homogenate (80) and human placenta microsomes (150). These results suggest that ARSC accounts for the relatively low iodothyronine sulfatase activity of human placenta, and that additional arylsulfatase(s) contributes to the high iodothyronine sulfatase activity in human liver. Further research is needed to identify these iodothyronine sulfatases, and to study the physiological importance of the reversible sulfation of iodothyronines in thyroid hormone metabolism.  相似文献   

13.
Polyhalogenated aromatic hydrocarbons (PHAHs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenylethers, and bisphenol A derivatives are persistent environmental pollutants, which are capable of interfering with reproductive and endocrine function in birds, fish, reptiles, and mammals. PHAHs exert estrogenic effects that may be mediated in part by their hydroxylated metabolites (PHAH-OHs), the mechanisms of which remain to be identified. PHAH-OHs show low affinity for the ER. Alternatively, they may exert their estrogenic effects by inhibiting E2 metabolism. As sulfation of E2 by estrogen sulfotransferase (SULT1E1) is an important pathway for E2 inactivation, inhibition of SULT1E1 may lead to an increased bioavailability of estrogens in tissues expressing this enzyme. Therefore, we studied the possible inhibition of human SULT1E1 by hydroxylated PHAH metabolites and the sulfation of the different compounds by SULT1E1. We found marked inhibition of SULT1E1 by various PHAH-OHs, in particular by compounds with two adjacent halogen substituents around the hydroxyl group that were effective at (sub)nanomolar concentrations. Depending on the structure, the inhibition is primarily competitive or noncompetitive. Most PHAH-OHs are also sulfated by SULT1E1. We also investigated the inhibitory effects of the various PHAH-OHs on E2 sulfation by human liver cytosol and found that the effects were strongly correlated with their inhibitions of recombinant SULT1E1 (r = 0.922). Based on these results, we hypothesize that hydroxylated PHAHs exert their estrogenic effects at least in part by inhibiting SULT1E1-catalyzed E2 sulfation.  相似文献   

14.
Type 3 iodothyronine deiodinase (D3) is the major physiologic inactivator of thyroid hormone. This selenoenzyme, previously identified in human placenta and brain, catalyzes the inner-ring deiodination of T(4) to reverse T(3) and T(3) to 3, 3'-diiodothyronine, both of which are biologically inactive. We analyzed D3 expression in several human adult and fetal tissues by immunohistochemistry and correlated the results with D3 activity assays where possible. High D3 expression was present in the placental syncytiotrophoblasts and cytotrophoblasts, endothelium of fetal vessels, and maternal decidua. D3 was also present at other sites of maternal-fetal interface, including the umbilical arteries and vein and the fetal respiratory, digestive, and urinary tract epithelium. Surprisingly, D3 was also present in the endometrial glands of nonpregnant human uteri, and endometrial activity approximated that of term placenta. The presence of D3 at maternal-fetal interfaces is consistent with its role in modulating the thyroid status of the human fetus and its expression in endometrium suggests that local regulation of thyroid status is important in implantation.  相似文献   

15.
CONTEXT: Mechanisms regulating materno-fetal transfer of thyroid hormone are not well understood. Modulation of trophoblast type 3 iodothyronine deiodinase (D3) may play an important role. OBJECTIVE: The objective of this study was to investigate trophoblast thyroid hormone binding proteins that may modulate interactions between D3 and T4. DESIGN: Placentas were obtained by informed consent from women delivering normal infants by repeat cesarean section at 38-40 wk gestation. T4 and T3 binding was examined in human placenta. Serum thyroid hormone binding proteins were identified by Western blotting, and their mRNA was examined by RT-PCR. Presence of these proteins in trophoblast was determined by immunocytochemistry and immunofluorescence. Cytosol was progressively purified to reveal additional thyroid hormone binding proteins that were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Effects of mefenamic acid on placental deiodination were examined by HPLC. RESULTS: We detected high-affinity T4 and T3 binding in human placental cytosol. All three major serum-binding proteins, T4 binding globulin (TBG), transthyretin (TTR), and albumin, were present in cytosol. TTR mRNA and albumin mRNA were detected in human placenta, and TTR and albumin were identified histochemically in syncytiotrophoblasts. Neither TBG mRNA nor TBG was detected, suggesting that plasma TBG had contaminated the cytosol preparation. Low-affinity thyroid hormone binding proteins alpha-1-antitrypsin and alpha-1-acid glycoprotein were also identified. Addition of mefenamic acid, a potent inhibitor of thyroid hormone binding, to placental cytosol significantly enhanced deiodination of T4 by D3. CONCLUSIONS: Placenta produces a series of thyroid hormone binding proteins that may modify thyroid hormone deiodination and materno-fetal thyroid hormone transport.  相似文献   

16.
Biochemical mechanisms of thyroid hormone deiodination.   总被引:1,自引:0,他引:1  
Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T(4)) is activated by outer ring deiodination (ORD) to 3,3',5-triiodothyronine (T(3)), whereas both T(4) and T(3) are inactivated by inner ring deiodination (IRD) to 3,3',5-triiodothyronine and 3,3'-diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness. In this review we will briefly discuss recent developments in these different areas. These have resulted in the emerging view that the biological activity of thyroid hormone is regulated locally by tissue-specific regulation of the different deiodinases.  相似文献   

17.
Previous studies have shown that the inner ring deiodination (IRD) of T3 and the outer ring deiodination (ORD) of 3,3'-diiodothyronine are greatly enhanced by sulfate conjugation. This study was undertaken to evaluate the effect of sulfation on T4 and rT3 deiodination. Iodothyronine sulfate conjugates were chemically synthetized. Deiodination was studied by reaction of rat liver microsomes with unlabeled or outer ring 125I-labeled sulfate conjugate at 37 C and pH 7.2 in the presence of 5 mM dithiothreitol. Products were analyzed by HPLC or after hydrolysis by specific RIAs. T4 sulfate (T4S) was rapidly degraded by IRD to rT3S, with an apparent Km of 0.3 microM and a maximum velocity (Vmax) of 530 pmol/min X mg protein. The Vmax to Km ratio of T4S IRD was increased 200-fold compared with that of T4 IRD. However, formation of T3S by ORD of T4S could not be observed. The rT3S formed was rapidly converted by ORD to 3,3'-T2 sulfate, with an apparent Km of 0.06 microM and a Vmax of 516 pmol/min X mg protein. The enzymic mechanism of the IRD of T4S was the same as that of the deiodination of nonsulfated iodothyronines, as shown by the kinetics of stimulation by dithiothreitol or inhibition by propylthiouracil. The IRD of T4S and the ORD of rT3 were equally affected by a number of competitive inhibitors, suggesting a single enzyme for the deiodination of native and sulfated iodothyronines. In conjunction with previous findings on the deiodination of T3S, these results suggest that sulfation leads to a rapid and irreversible inactivation of thyroid hormone.  相似文献   

18.
We have studied the effects of maternal thyroid status on the effectiveness of the rat placenta near term as a barrier for the transfer of T4 and T3 to the fetus. Dams were given methimazole to minimize the fetal contribution to the T4 and T3 pools, so that the iodothyronines found in the conceptus are ultimately of maternal origin. The dams were infused with saline, or with T4 or T3 at doses ranging from 2.3-27.8 nmol T4 and from 0.77-20.7 nmol T3/100 g BW per day. A group of normal pregnant dams (C) was included. At 21 days of gestation T4, T3, and rT3 were measured by RIA in maternal and fetal plasma, and in maternal and fetal sides of the placenta. The total fetal extrathyroidal T4 and T3 pools were also determined. The dose-related changes in T4, T3, and rT3 levels in the placenta confirm the presence of both inner and outer ring iodothyronine deiodinase activities, and suggest increasing accumulation of the iodothyronines. Despite this, fetal extrathyroidal T4 and T3 increase progressively in T4-infused groups as a function of maternal circulating T4 levels. Fetal extrathyroidal T3 increases progressively in T3-infused groups as a function of maternal plasma T3. There was no evidence that the net maternal contribution of T4 or T3 would be proportionally less when the maternal pools became very high. It was concluded that the rat placenta is only a limited barrier for the transfer of T4 and T3 to the fetus.  相似文献   

19.
Sulfation of lutropin oligosaccharides with a cell-free system.   总被引:5,自引:2,他引:5       下载免费PDF全文
Sulfate is covalently linked to the oligosaccharides on the alpha and beta subunits of bovine lutropin (luteinizing hormone; LH) but not to those on human chorionic gonadotropin (hCG). Since the amino acid sequences of the pituitary and placental alpha subunits are homologous, comparison of their asparagine-linked sugars can provide information regarding tissue specificity of oligosaccharide maturation. To characterize this post-translational modification, we have developed a reconstituted cell-free sulfation system. Sulfate is incorporated into exogenously added glycoproteins by sulfotransferases from Triton X-100-lysed Golgi membranes in the presence of 3'-phosphoadenosine 5'-phospho[35S]sulfate, which is generated from [35S]sulfate by a ribosome-free supernate from Krebs ascites tumor cells. LH is sulfated by pituitary and liver membranes but not by those from placenta. Desialylated hCG (AshCG) is sulfated by membranes from placenta and pituitary, but not liver, while hCG is not sulfated by any of these membranes. Endoglycosidase F releases all the incorporated sulfate from LH in the form of a heterogeneous mixture of mono- and disulfated oligosaccharides. In contrast, the sulfate added to AshCG is apparently attached to peptide rather than oligosaccharide. As found with the cell-free system, sulfate metabolically incorporated into LH by pituitary cells is present on a heterogeneous population of mono- and disulfated oligosaccharides. Thus the cell-free sulfation system accurately duplicates the in vivo process.  相似文献   

20.
The trophoblast of human placenta is composed of syncytiotrophoblast (S-cell) and cytotrophoblast (C-cell). C-cell displays proliferative properties, while S-cell displays little potential for proliferation. A close similarity between cytologic localization of myc product and [3H]thymidine labeling suggests that myc expression is linked to trophoblast proliferation. In situ hybridization with cDNA probes revealed that mRNA expression of hCG alpha and hCG beta are initiated before syncytial formation, whereas hPL mRNA is expressed only in fully differentiated S-cell. EGF and EGF receptor (EGF-R) in 4-5 weeks placenta were localized to C-cell, whereas EGF and EGF-R in 6-12 weeks placenta were localized to S-cell. Consistent with these findings, EGF exerted gestational age dependent dual action on early placenta: one was to stimulate trophoblast proliferation in 4-5 weeks placenta and the other was to stimulate differentiated trophoblast function in 6-12 weeks placenta. An optimal dose of thyroid hormone stimulated progesterone, estradiol, hCG and hPL production in early placental tissues. Furthermore, women with unfavorable outcome of threatened abortion had lower T4, T3, free T4 and free T3 levels, as compared to women with favorable outcome. These data imply a role for thyroid hormone in maintaining early pregnancy. On the other hand, progesterone selectively inhibited hCG (alpha, beta) mRNAs expression and decreased hCG secretion in normal placental tissues, whereas choriocarcinoma did not respond to progesterone. This suggests that inhibitory regulation of hCG synthesis in choriocarcinoma is different from normal placenta. Characterization of choriocarcinoma hCG revealed that there are striking differences in carbohydrate structures between normal hCG and choriocarcinoma hCG. Sialic acid content in choriocarcinoma hCG was extremely lower compared to that in normal hCG. The biochemical detection of the alteration in hCG sugar chains is useful for early diagnosis of choriocarcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号