首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhalation of Francisella tularensis biovar A causes pneumonic tularemia associated with high morbidity and mortality rates in humans. Exposure to F. tularensis usually occurs by accident, but there is increasing awareness that F. tularensis may be deliberately released in an act of bioterrorism or war. The development of a vaccine against pneumonic tularemia has been limited by a lack of information regarding the mechanisms required to protect against this disease. Vaccine models for F. tularensis in inbred mice would facilitate investigations of the protective mechanisms and significantly enhance vaccine development. Intranasal vaccination with the attenuated live vaccine strain (LVS) of F. tularensis reproducibly protected BALB/c mice, but not C57BL/6 mice, against intranasal and subcutaneous challenges with a virulent clinical isolate of F. tularensis biovar A (NMFTA1). The resistance of LVS-vaccinated BALB/c mice to intranasal NMFTA1 challenge was increased 100-fold by boosting with live NMFTA1 but not with LVS. The protective response was specific for F. tularensis and required both CD4 and CD8 T cells. The vaccinated mice appeared outwardly healthy for more than 2 months after NMFTA1 challenge, even though NMFTA1 was recovered from more than half of the vaccinated mice. These results show that intranasal vaccination induces immunity that protects BALB/c mice from intranasal infection by F. tularensis biovar A.  相似文献   

2.
Francisella tularensis causes severe pneumonia that can be fatal if it is left untreated. Due to its potential use as a biological weapon, research is being conducted to develop an effective vaccine and to select and study adjuvant molecules able to generate a better and long-lasting protective effect. PorB, a porin from Neisseria meningitidis, is a well-established Toll-like receptor 2 ligand and has been shown to be a promising vaccine adjuvant candidate due to its ability to enhance the T-cell costimulatory activity of antigen-presenting cells both in vitro and in vivo. BALB/c mice were immunized with lipopolysaccharide (LPS) isolated from the F. tularensis subsp. holarctica live vaccine strain (LVS), with or without PorB from N. meningitidis, and the antibody levels induced during the vaccination regimen and the level of protection against intranasal challenge with LVS were determined. Antigen administered alone induced a specific F. tularensis LPS immunoglobulin M (IgM) response that was not maintained over the weeks and that conferred protection to only 25% of the mice. In contrast, F. tularensis LPS given in combination with neisserial PorB induced consistent levels of specific IgM throughout the immunization and increased the proportion of surviving mice to 70%. Postchallenge cytokine analysis showed that interleukin-6 (IL-6), monocyte chemoattractant protein 1, and gamma interferon were markers of mortality and that IL-1beta was a correlate of survival, independent of the presence of PorB as an adjuvant. These data indicate that neisserial PorB might be an optimal candidate adjuvant for improving the protective effect of F. tularensis LPS and other subunit vaccines against tularemia, but there is still a need to test its efficacy against virulent type A and type B F. tularensis strains.  相似文献   

3.
Francisella tularensis is a gram-negative intracellular bacterium that is considered to be a potential category A biological weapon due to its extreme virulence. Although vaccination with the attenuated live vaccine strain (LVS) of F. tularensis can protect against lethal challenge, use of inactivated or subunit forms as vaccine candidates for induction of protective antibody responses has not been fully evaluated. In the present study, we examined whether immune protection in the lung could be stimulated by intranasal administration of inactivated LVS together with interleukin-12 (IL-12) as an adjuvant. LVS was inactivated by heat, paraformaldehyde treatment, or exposure to UV, and inactivation of the preparations was confirmed by assessing bacterial growth and the survival of mice after direct inoculation. We found that mucosal vaccination with inactivated LVS provided 90 to 100% protection in mice after lethal intranasal challenge with 10(4) CFU of LVS, and this protection was dependent on inclusion of exogenous IL-12 during vaccine administration. Survival of vaccinated mice after live bacterial challenge was correlated with reduced bacterial burden, decreased pulmonary inflammation, increased serum antibody titers, and lower levels of gamma interferon (IFN-gamma), tumor necrosis factor alpha, and IL-6 in the lungs, livers, and spleens. Whereas NK cells were primarily responsible for the production of IFN-gamma in unvaccinated, challenged animals, vaccinated mice had increased levels of lung IFN-gamma+ CD4+ T cells after challenge. Significantly, mice genetically deficient in immunoglobulin A (IgA) expression were unable to survive lethal challenge after vaccination. These results are the first results to demonstrate that IgA-mediated protection against lethal respiratory tularemia occurs after mucosal vaccination with inactivated F. tularensis LVS.  相似文献   

4.
5.
Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-gamma) and IL-12 were strictly required for protection, since mice deficient in IFN-gamma, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-gamma-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8-/- mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-gamma and CD8 T cells.  相似文献   

6.
Previous results have demonstrated that nonspecific protective immunity against lethal Francisella tularensis live vaccine strain (LVS) or Listeria monocytogenes infection can be stimulated either by sublethal infection with bacteria or by treatment with bacterial DNA given 3 days before lethal challenge. Here we characterize the ability of purified lipopolysaccharide (LPS) from F. tularensis LVS to stimulate similar early protective immunity. Treatment of mice with surprisingly small amounts of LVS LPS resulted in very strong and long-lived protection against lethal LVS challenge within 2 to 3 days. Despite this strong protective response, LPS purified from F. tularensis LVS did not activate murine B cells for proliferation or polyclonal immunoglobulin secretion, nor did it activate murine splenocytes for secretion of interleukin-4 (IL-4), IL-6, IL-12, or gamma interferon (IFN-gamma). Immunization of mice with purified LVS LPS induced a weak specific anti-LPS immunoglobulin M (IgM) response and very little IgG; however, infection of mice with LVS bacteria resulted in vigorous IgM and IgG, particularly IgG2a, anti-LPS antibody responses. Studies using various immunodeficient mouse strains, including LPS-hyporesponsive C3H/HeJ mice, muMT(-) (B-cell-deficient) knockout mice, and IFN-gamma-deficient mice, demonstrated that the mechanism of protection does not involve recognition through the Lps(n) gene product; nonetheless, protection was dependent on B cells as well as IFN-gamma.  相似文献   

7.
Francisella tularensis is a facultative intracellular pathogen and is the etiological agent of tularemia. It is capable of escaping from the phagosome, replicating to high numbers in the cytosol, and inducing apoptosis in macrophages of a variety of hosts. F. tularensis has received significant attention recently due to its potential use as a bioweapon. Currently, there is no licensed vaccine against F. tularensis, although a partially protective live vaccine strain (LVS) that is attenuated in humans but remains fully virulent for mice was previously developed. An F. tularensis LVS mutant deleted in the purMCD purine biosynthetic locus was constructed and partially characterized by using an allelic exchange strategy. The F. tularensis LVS delta purMCD mutant was auxotrophic for purines when grown in defined medium and exhibited significant attenuation in virulence when assayed in murine macrophages in vitro or in BALB/c mice. Growth and virulence defects were complemented by the addition of the purine precursor hypoxanthine or by introduction of purMCDN in trans. The F. tularensis LVS delta purMCD mutant escaped from the phagosome but failed to replicate in the cytosol or induce apoptotic and cytopathic responses in infected cells. Importantly, mice vaccinated with a low dose of the F. tularensis LVS delta purMCD mutant were fully protected against subsequent lethal challenge with the LVS parental strain. Collectively, these results suggest that F. tularensis mutants deleted in the purMCD biosynthetic locus exhibit characteristics that may warrant further investigation of their use as potential live vaccine candidates.  相似文献   

8.
A 17-kDa lipoprotein, TUL4, of the facultative intracellular bacterium Francisella tularensis is one of several membrane proteins that induce an in vitro response in T cells from F. tularensis-primed humans. A DNA fragment of the live vaccine strain F. tularensis LVS encoding TUL4 was cloned into Salmonella typhimurium chi 4072, an attenuated delta cya delta crp mutant. Expression of the protein by the recombinant S. typhimurium chi 4072 (pTUL4-15) was maintained after passage in BALB/cJ mice. When mice were immunized with S. typhimurium chi 4072(pTUL4-15), some animals showed an antibody response and a T-cell response to TUL4. When the immunized mice were challenged with the live vaccine strain F. tularensis LVS, bacterial counts in the liver and spleen were lower than in animals immunized with S. typhimurium chi 4072. Immunization with F. tularensis LVS caused a much stronger protection against the challenge than did immunization with S. typhimurium chi 4072(pTUL4-15). The present study demonstrated that the 17-kDa lipoprotein TUL4 of F. tularensis is involved in a protective immunity to tularemia. Possibly, several T-cell-reactive proteins of the organism have to contribute for optimal protection to be achieved.  相似文献   

9.
10.
Francisella tularensis, an aerobic, non-spore-forming, gram-negative coccobacillus, is the causative agent of tularemia. We reported previously that F. tularensis live vaccine strain (LVS) elicited strong, dose-dependent NF-kappaB reporter activity in Toll-like receptor 2 (TLR2)-expressing HEK293T cells and proinflammatory gene expression in primary murine macrophages. Herein, we report that F. tularensis LVS-induced murine macrophage proinflammatory cytokine gene and protein expression are overwhelmingly TLR2 dependent, as evidenced by the abrogated responses of TLR2(-/-) macrophages. F. tularensis LVS infection also increased expression of TLR2 both in vitro, in mouse macrophages, and in vivo, in livers from F. tularensis LVS-infected mice. Colocalization of intracellular F. tularensis LVS, TLR2, and MyD88 was visualized by confocal microscopy. Signaling was abrogated if the F. tularensis LVS organisms were heat or formalin killed or treated with chloramphenicol, indicating that the TLR2 agonist activity is dependent on new bacterial protein synthesis. F. tularensis LVS replicates in macrophages; however, bacterial replication was not required for TLR2 signaling because LVSDeltaguaA, an F. tularensis LVS guanine auxotroph that fails to replicate in the absence of exogenous guanine, activated NF-kappaB in TLR2-transfected HEK293T cells and induced cytokine expression in wild-type macrophages comparably to wild-type F. tularensis LVS. Collectively, these data indicate that the primary macrophage response to F. tularensis LVS is overwhelmingly TLR2 dependent, requires de novo bacterial protein synthesis, and is independent of intracellular F. tularensis replication.  相似文献   

11.
Francisella tularensis is a Gram-negative, facultative intracellular bacterium causing disease in many mammalian species. The low infectious dose of F. tularensis and the ease of air-borne transmission are the main features responsible for the classification of this bacterium as a potential biological weapon. The live attenuated strain of F. tularensis live vaccine strain (LVS) is currently only effective vaccine against tularemia, however, this type of vaccine has not been approved for human use. In the presented study, sub-immunoproteome analysis was performed to search for new immunogenic proteins of Francisella tularensis LVS grown under different conditions. By this approach 35 immunoreactive antigens were identified, 19 of them showed to be novel immunogens. In conclusion, sub-immunoproteome analysis resulted in successful identification of novel immunoreactive proteins.  相似文献   

12.
Francisella tularensis is a highly virulent bacterium that causes tularemia, a disease that is often fatal if untreated. A live vaccine strain (LVS) of this bacterium is attenuated for virulence in humans but produces lethal disease in mice. F. tularensis has been classified as a Category A agent of bioterrorism. Despite this categorization, little is known about the components of the organism that are responsible for causing disease in its hosts. Here, we report the deletion of a well-characterized lipoprotein of F. tularensis, designated LpnA (also known as Tul4), in the LVS. An LpnA deletion mutant was comparable to the wild-type strain in its ability to grow intracellularly and cause lethal disease in mice. Additionally, mice inoculated with a sublethal dose of the mutant strain were afforded the same protection against a subsequent lethal challenge with the LVS as were mice initially administered a sublethal dose of the wild-type bacterium. The LpnA-deficient strain showed an equivalent ability to promote secretion of chemokines by human monocyte-derived macrophages as its wild-type counterpart. However, recombinant LpnA potently stimulated primary cultures of human macrophages in a Toll-like receptor 2-dependent manner. Although human endothelial cells were also activated by recombinant LpnA, their response was relatively modest. LpnA is clearly unnecessary for multiple functions of the LVS, but its inflammatory capacity implicates it and other Francisella lipoproteins as potentially important to the pathogenesis of tularemia.  相似文献   

13.
Lipopolysaccharide microarrays for the detection of antibodies   总被引:1,自引:0,他引:1  
Lipopolysaccharide (LPS) is the major component of Gram-negative bacterial outer membrane. LPS are immunogenic and show species/strain specificity. The demonstration of anti-LPS antibodies in clinical samples is of diagnostic value in certain Gram-negative bacterial infections. In the present study we explored the possibility of immobilizing LPS isolated from different bacteria in a microarray format for the detection of anti-LPS antibodies. LPS was successfully immobilized on nitrocellulose-coated glass slides, preserving the accessibility of epitopes for antibody binding. Specificity of the LPS arrays was established using four different monoclonal antibodies specific for Escherichia coli O111, E. coli O157, Francisella tularensis and Salmonella typhimurium O-antigens and a panel of LPS preparations. The detection limit of antibodies was found to be 10 ng/ml, which is about a 100-fold greater sensitivity compared to conventional immunofluorescence assays. Furthermore, using LPS arrays, tularemia positive canine serum samples could be differentiated from negative samples based on the presence of significantly higher levels of anti-F. tularensis LPS antibodies in positive samples. LPS arrays will facilitate simultaneous screening of samples against multiple antigens and are expected to find applications in diagnostics and seroepidemiology.  相似文献   

14.
Immunity to experimental infection with the facultative intracellular bacterium Francisella tularensis is generally considered an example of T-cell-mediated, macrophage-expressed immunity. However, the results of the present study indicate that T-cell-independent mechanisms are also important in anti-Francisella defense. They show that mice selectively depleted of CD4+, CD8+, or both T-cell populations by treatment with T-cell subset-specific monoclonal antibodies remained capable of controlling and partly resolving a primary sublethal Francisella infection. Similarly, it was found that Francisella-immune mice depleted of either or both subsets of T cells retain a high degree of acquired immunity to reinfection. Together, these findings imply that resistance to primary and secondary tularemia can be mediated by cells other than CD4+ and CD8+ T cells.  相似文献   

15.
Ribonucleic acid (RNA)-rich extracts derived from the attenuated strain of Francisella tularensis (strain LVS) protected Swiss mice against lethal challenge with F. tularensis strain 425 but not against strain SCHU S4. No killed preparation, including an RNA-rich extract from SCHU S4 itself, offered protection against strain SCHU S4 in contrast to the high level of protection offered against this strain by vaccination with live strain LVS. The protective activity observed against strain 425 was sensitive to ribonuclease but not to Pronase. Protective activity is not a general property of bacterial RNA, since RNA-rich extracts from Staphylococcus aureus offered no protection against tularemia, although disc gel electrophoresis showed similar kinds and amounts of RNA in preparations form F. tularensis and S. aureus. Furthermore, inability to localize activity to a specific region in sucrose gradients suggests a structural rather than an informational role for the RNA in such extracts. RNA-rich extracts from F. tularensis but not from S. aureus were efficient inducers of F. tularensis opsonins in mouse serum, suggesting one mechanism by which such extracts confer protection.  相似文献   

16.
Francisella tularensis, a gram-negative bacterium, is the etiologic agent of tularemia and has recently been classified as a category A bioterrorism agent. Infections with F. tularensis result in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms mediating this response have not been completely elucidated. In the present study, we determined the role of Toll-like receptors (TLRs) in mediating inflammatory responses to F. tularensis LVS, and the role of NF-kappaB in regulating these responses. Stimulation of bone marrow-derived dendritic cells from C57BL/6 wild-type (wt) and TLR4-/- but not TLR2-/- mice, with live F. tularensis LVS elicited a dose-dependent increase in the production of tumor necrosis factor alpha. F. tularensis LVS also induced in a dose-dependent manner an up-regulation in the expression of the costimulatory molecules CD80 and CD86 and of CD40 and the major histocompatibility complex class II molecules on dendritic cells from wt and TLR4-/- but not TLR2-/- mice. TLR6, not TLR1, was shown to be involved in mediating the inflammatory response to F. tularensis LVS, indicating that the functional heterodimer is TLR2/TLR6. Stimulation of dendritic cells with F. tularensis resulted in the activation of NF-kappaB, which resulted in a differential effect on the production of pro- and anti-inflammatory cytokines. Taken together, our results demonstrate the role of TLR2/TLR6 in the host's inflammatory response to F. tularensis LVS in vitro and the regulatory function of NF-kappaB in modulating the inflammatory response.  相似文献   

17.
18.
Two monoclonal antibodies (FT14 and FT2F11) directed against the lipopolysaccharide (LPS) of Francisella tularensis were produced for use in tests to detect the organism in environmental samples and clinical specimens. The specificity of the antibodies was determined by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Both antibodies detected LPS from F. tularensis by ELISA, but only one antibody, FT14, was serologically active in an immunoblot. Treatment of the LPS with detergents prior to ELISA eliminated its binding to FT2F11 but not FT14. Qualitatively, both antibodies detected 10 different strains of F. tularensis by ELISA, but quantitatively, FT14 gave a detectable reaction with 10(3) organisms, whereas FT2F11 was able to detect only 10(5) organisms. FT14 did not cross-react with LPS from a range of other gram-negative species of bacteria, whereas FT2F11 cross-reacted against Vibrio cholerae LPS. Neither antibody showed cross-reactions when entire gram-negative organisms were used as antigens. In a competition ELISA, the two monoclonal antibodies were shown to compete for different epitopes. FT14 was strongly inhibited by purified O side chain from F. tularensis LPS, but FT2F11 was only weakly inhibited. It was inferred from those results that FT14 is directed against the O side chain and that FT2F11 is directed against the core.  相似文献   

19.
Six hybridoma lines producing monoclonal antibodies (MAbs) against Moraxella bovis were established from fusions between the SP2/0 myeloma cells and BALB/c mice splenocytes. Three antibodies were of the IgG1 isotype, two were IgG2a, and one was IgG2b. The specificity of the antibodies was determined by indirect enzyme-linked immunosorbent assay (ELISA) using whole cells of M. bovis and of other Gram-negative bacteria, and lipopolysaccharide (LPS) from M. bovis JUR2 and E. coli as antigens. Ascitic fluid produced by the six hybridoma lines inhibited hemagglutination by M. bovis GF9. One MAb (35F) reacted specifically with purified M. bovis LPS in the ELISA test. The MAb panel detected heterogeneity among the isolates recovered from different geographical regions.  相似文献   

20.
Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号