首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GABA-like immunoreactivity in the cat retina: light microscopy   总被引:1,自引:0,他引:1  
Semithin sections of the cat retina were stained with antibodies against GABA conjugated to bovine serum albumin with glutaraldehyde. Labelled cells were visualized by means of the peroxidase-antiperoxidase method. In the outer plexiform layer both A- and B-type horizontal cells and the B-type axon terminal system expressed GABA-like immunoreactivity. Approximately 25-30% of all amacrine cells and the whole inner plexiform layer were heavily labelled. Two types of putative GABA-ergic interplexiform cells could be distinguished. One of them also expressed tyrosine-hydroxylase-like immunoreactivity. A few bipolar cells were also GABA-immunolabelled. GABA-like immunoreactivity and 3H-muscimol uptake were colocalized in 90% of the amacrine cells labelled. However, horizontal cells did not accumulate 3H-muscimol.  相似文献   

2.
The anatomical substrates of spatial and color vision in the primate retina are investigated by measuring the immunoreactivity and spatial density of bipolar, amacrine and horizontal cells in the inner nuclear layer of the macaque monkey retina. Bipolar cells can be distinguished from amacrine and horizontal cells by their differential immunoreactivity to antisera against glutamate, glycine, GABA, parvalbumin, calbindin (CaBP D-28K), and the L7 protein from mouse cerebellum. The spatial density of bipolar cells is compared to the densities of photoreceptors and ganglion cells at different retinal eccentricities. In the centralmost 2 mm, cone bipolar cells outnumber ganglion cells by about 1.4:1. The density of cone bipolar cells is thus high enough to allow for input to different (parasol and midget) ganglion cell classes by different (diffuse and midget) bipolar cell classes. The density gradient of cone bipolar cells follows closely that of ganglion cells in central retina but falls less steeply in peripheral retina. This suggests that the convergence of cone signals to the receptive fields of ganglion cells in the peripheral retina occurs in the inner plexiform layer. The density of cone bipolar cells is 2.5-4 times that of cones at all eccentricities studied, implying that cone connectivity to bipolar cells remains constant throughout the retina. Different subgroups of bipolar cells are distinguished by their relative immunoreactivity to the different antisera. All rod and cone bipolar cells show moderate to strong glutamate-like immunoreactivity. The bipolar cells that show weak to moderate GABA-like immunoreactivity are also labeled with the antiserum to the L7 protein and are thus identified as rod bipolar cells. Nearly half of all cone bipolar cells showed glycine-like immunoreactivity. The results suggest that the inhibitory neurotransmitter candidates GABA and glycine are segregated respectively in rod and cone bipolar cell pathways. A diffuse, cone bipolar cell type can be identified by the anti-parvalbumin and the anti-calbindin antisera. All horizontal cells show parvalbumin-like immunoreactivity. Nearly all amacrine cells show GABA-like or glycine-like immunoreactivity; a variety of subpopulations also show immunoreactivity to one or more of the other markers used.  相似文献   

3.
4.
The distribution of gamma-aminobutyric acid (GABA)-like immunoreactivity was investigated in the pedal ganglia (PG) of Mytilus galloprovincialis (Mollusca, Bivalvia) with the aid of an antiserum raised against GABA coupled to bovine serum albumin. Examination of whole-mount preparations and serial vibratome and semithin sections showed the presence of different types of immunoreactive neurons. Small unipolar neurons were the most numerous, and were located mainly in the lateral ganglion cortex. A few bipolar and small multipolar neurons were scattered in the cortex, and, more rarely, in the neuropile. Furthermore, two large symmetrical multipolar neurons, the processes of which extended over large fields in the ipsilateral and contralateral neuropile, were consistently observed in each ganglion. Immunoreactive fibers formed networks in the neuropile and ran parallel in the commissure and in all nerves and connectives. The morphology and distribution of neurons and fibers immunostained by the anti-GABA serum were similar to those of GAD-like immunoreactive elements, which indicates that the neurotransmitter and its biosynthetic enzyme are present in the same neurons. Moreover, comparison of serial semithin sections alternatively incubated in postembedding with anti-GABA and antiserotonin sera revealed that immunoreactivity for these two substances was present in different neuronal populations. However, close association between serotoninlike and GABA-like immunoreactive elements was observed in a few PG areas. GABA-like immunoreactivity was demonstrated on ultrathin sections by using secondary antiserum coupled to colloidal gold particles. Labeling was found over somata, fibers, and varicosities containing a distinct type of small (63 nm), pleomorphic, dense-cored vesicle.  相似文献   

5.
Axon-bearing amacrine cells of the macaque monkey retina   总被引:2,自引:0,他引:2  
A new and remarkable type of amacrine cell has been identified in the primate retina. Application of the vital dye acridine orange to macaque retinas maintained in vitro produced a stable fluorescence in the somata of apparently all retinal neurons in both the inner nuclear and ganglion cell layers. Large somata (approximately 15-20 microns diam) were also consistently observed in the approximate center of the inner plexiform layer (IPL). Intracellular injections of horseradish peroxidase (HRP) made under direct microscopic control showed that the cells in the middle of the IPL constitute a single, morphologically distinct amacrine cell subpopulation. An unusual and characteristic feature of this cell type is the presence of multiple axons that arise from the dendritic tree and project beyond it to form a second, morphologically distinct arborization within the IPL; these cells have thus been referred to as axon-bearing amacrine cells. The dendritic tree of the axon-bearing amacrine cell is highly branched (approximately 40-50 terminal dendrites) and broadly stratified, spanning the central 50% of the IPL so that the soma is situated between the outermost and innermost branches. Dendritic field size increases from approximately 200 microns in diameter within 2 mm of the fovea to approximately 500 microns in the retinal periphery. HRP injections of groups of neighboring cells revealed a regular intercell spacing (approximately 200-300 microns in the retinal periphery), suggesting that dendritic territories uniformly cover the retina. One to four axons originate from the proximal dendrites as thin (less than 0.5 microns), smooth processes. The axons increase in diameter (approximately 1-2 microns) as they course beyond the dendritic field and bifurcate once or twice into secondary branches. These branches give rise to a number of thin, bouton-bearing collaterals that extend radially from the dendritic tree for 1-3 mm without much further branching. The result is a sparsely branched and widely spreading axonal tree that concentrically surrounds the smaller, more highly branched dendritic tree. The axonal tree is narrowly stratified over the central 10-20% of the IPL; it is approximately ten times the diameter of the dendritic tree, resulting in a 100 times greater coverage factor. The clear division of an amacrine cell's processes into distinct dendritic and axonal components has recently been observed in other, morphologically distinct amacrine cell types of the cat and monkey retina and therefore represents a property common to a number of functionally distinct cell types. It is hypothesized that the axon-bearing amacrine cells, like classical neurons,  相似文献   

6.
We studied the expression of glutamate decarboxylase (GAD), GAD65 and GAD67, in cat retina by immunocytochemistry. About 10% of GABAergic amacrime cells express only GAD65 and 30% express only GAD67. Rougly 60% contain both forms of the enzyme, but GAD67 is present only at low levels in the majority of these double-labeled amacrine cells. The staining pattern in the inner plexiform layer (IPL) for the two GAD forms was also different. GAD65 was restricted to strata 1–4, and GAD67 was apparent throughout the IPL but was strongest in strata 1 and 5. This indicates that soams, as well as their processes, are differentially stained for the two forms of GAD. Cell types expressing only GAD65 include interplexiform cells, one type of cone bipolar cell, and at least one type of serotonin-accumulating amacrine cell. Cell types expressing only GAD67 include amacrine cells synthesizing dopamine, amacrine cells synthesizing nitric oxide (NO), and amacrine cells accumulating serotonin. Cholinergic amacrine cells express a low level of both GAD forms. Our findings in the retina are consistent with previous observations in the brain that GAD65 expression is greater in terminals than in somas. In addition, in retina most neurons expressing GAD67 also contain a second neurotransmitter as well as GABA, and they tend to be larger than neurons expressing GAD65. We propose that large cells have a greater demand for GABA than small cells, and thus require the constant, relatively unmodulated level of GABA that is provided by GAD67. © 1995 Willy-Liss, Inc.  相似文献   

7.
GABA-like immunoreactivity in the cat retina: electron microscopy   总被引:4,自引:0,他引:4  
The synaptic organization of the cat retina was studied with antibodies against the GABA-GA (glutaraldehyde)-BSA (bovine serum albumin) complex. The postembedding technique combined with immunogold labelling ensured ultrastructural preservation and made identification of synapses possible. The most common putative GABA-ergic synapses in the inner plexiform layer were amacrine-to-bipolar-cell synapses followed by amacrine-to-ganglion-cell and amacrine-to-amacrine-cell synapses. GABA-immunoreactive amacrine cells received most of their synaptic input from bipolar cells followed by other amacrine cells. Synapses between two labelled amacrine cells were common. Rod bipolar cells were the predominant input source and also the preferred output target of GABA-labelled amacrine cells. OFF- and ON-ganglion cells received putative GABA-ergic synapses at their dendrites in laminas a and b, respectively, and also at their somata. In the outer plexiform layer, synapses of interplexiform cells onto bipolar cell dendrites expressed GABA-like immunoreactivity. In both the cone pedicles and the rod spherules, GABA-like immunoreactivity was observed in horizontal cell processes.  相似文献   

8.
Localization of glycine-containing neurons in the Macaca monkey retina   总被引:1,自引:0,他引:1  
Autoradiography following 3H-glycine (Gly) uptake and immunocytochemistry with a Gly-specific antiserum were used to identify neurons in Macaca monkey retina that contain a high level of this neurotransmitter. High-affinity uptake of Gly was shown to be sodium dependent whereas release of both endogenous and accumulated Gly was calcium dependent. Neurons labeling for Gly included 40-46% of the amacrine cells and nearly 40% of the bipolars. Synaptic labeling was seen throughout the inner plexiform layer (IPL) but with a preferential distribution in the inner half. Bands of labeled puncta occurred in S2, S4, and S5. Both light and postembedding electron microscopic (EM) immunocytochemistry identified different types of amacrine and bipolar cell bodies and their synaptic terminals. The most heavily labeled Gly+ cell bodies typically were amacrine cells having a single, thick, basal dendrite extending deep into the IPL and, at the EM level, electron-dense cytoplasm and prominent nuclear infoldings. This cell type may be homologous with the Gly2 cell in human retina (Marc and Liu: J. Comp. Neurol. 232:241-260, '85) and the AII/Gly2 of cat retina (Famiglietti and Kolb: Brain Res. 84:293-300, '75; Pourcho and Goebel: J. Comp. Neurol. 233:473-480, '85a). Gly+ amacrines synapse most frequently onto Gly- amacrines and both Gly- and Gly+ bipolars. Gly+ bipolar cells appeared to be cone bipolars because their labeled dendrites could be traced only to cone pedicles. The pattern of these labeled dendritic trees indicated that both diffuse and midget types of biopolars were Gly+. The EM distribution of labeled synapses showed Gly+ amacrine synapses throughout the IPL, but these composed only 11-23% of the amacrine population. Most of the Gly+ bipolar terminals were in the inner IPL, where 70% of all bipolar terminals were labeled. These findings are consistent with previous data from cats and humans and suggest that both amacrine and bipolar cells contribute to glycine-mediated neurotransmission in the monkey retina.  相似文献   

9.
Vesicular transporters play an essential role in the packaging of glutamate for synaptic release and so are of particular importance in the retina, where glutamate serves as the neurotransmitter for photoreceptors, bipolar cells, and ganglion cells. In the present study, we have examined the distribution of the three known isoforms of vesicular glutamate transporter (VGLUT) in the cat retina. VGLUT1 was localized to all photoreceptor and bipolar cells, whereas VGLUT2 was found in ganglion cells. This basic pattern of complementary distribution for the two transporters among known populations of glutamatergic cells is similar to previous findings in the brain and spinal cord. However, the axon terminals of S-cone photoreceptors were found to express both VGLUT1 and VGLUT2 and some ganglion cells labeled for both VGLUT2 and VGLUT3. Such colocalizations suggest the existence of dual modes of regulation of vesicular glutamate transport in these neurons. Staining for VGLUT2 was also present in a small number of varicose processes, which were seen to ramify throughout the inner plexiform layer. These fibers may represent axon collaterals of ganglion cells. The most prominent site of VGLUT3 immunoreactivity was in a population of amacrine cells; the axon terminals of B-type horizontal cells were also labeled at their contacts with rod spherules. The presence of the VGLUT3 transporter at sites not otherwise implicated in glutamate release may indicate novel modes of glutamate signaling or additional roles for the transporter molecule.  相似文献   

10.
The midget-parvocellular pathway in foveal retina of primates shows a "private line" (one-to-one) connectivity with cone photoreceptors. The connectivity of this pathway outside the fovea is not well understood. Here, we studied the population of OFF midget bipolar cells across the retinae of marmoset monkeys (Callithrix jacchus) by using light microscopy. Cone pedicles were labeled with peanut agglutinin, OFF midget bipolar cells were labeled with antibodies against CD15, and midget ganglion cells were retrogradely labeled from the lateral geniculate nucleus and subsequently photofilled. Each midget bipolar cell contacts a single cone in foveal retina, but outside the fovea midget bipolar cells contact multiple cones: one to two cones at 1 mm ( approximately 8 degrees); three to four cones at 3-4 mm ( approximately 25 degrees); and five or more cones beyond 6 mm (>50 degrees). Throughout this eccentricity range, all medium (M) and long (L) wavelength sensitive cones make similar number of contacts with midget bipolar cells, but short wavelength sensitive (S) cones make little or no contact. By calculating the numerical convergence between midget bipolar and midget ganglion cells, we estimate that midget ganglion cells receive input from up to 25 cones at approximately 5 degrees, and from more than 65 cones at approximately 50 degrees. No obvious differences were seen between the retinae of animals with di- or trichromatic color vision. The finding that the one-to-one connectivity is restricted to the fovea predicts that in marmosets spectral mixing of M/L cone inputs will occur peripheral to 10 degrees of visual angle.  相似文献   

11.
Putative sites of acetylcholine synthesis in the retina of the embryonic and posthatched chick were localized immunohistochemically with antisera to choline acetyltransferase; the resultant choline acetyltransferase-like immunoreactivity (ChAT-IR) was compared to demonstrated sites of acetyltransferase (AChE) activity, and changes were followed in localization during development. The results confirmed the early and rapid course of development of the chick's retinal cholinergic system described in previous biochemical and morphological studies. Immunoreactivity was first detected at embryonic day 6.5 in cells close to the retina's vitreal surface. By 8 days it was present in cells in two juxtaposed rows; by the ninth day the two rows were separated and immunoreactivity was evident in two subliminae of the inner plexiform layer. On the tenth day distribution was like that in the posthatched chicken, in type I cholinergic cells in the inner nuclear layer and in type II cells in the ganglion cell layer (Millar et al.: Neurosci. Lett. 61:311-316, '85), and similar to that of most vertebrates. Three days before hatching, a third population of weakly immunoreactive cells (type III cells) appeared within the inner nuclear layer. The onset of localizable ChAT-IR occurred in amacrine cells and in their processes, before the period of synaptogenesis. Acetylcholinesterase activity was localized at an earlier age than ChAT-IR, and at all ages was present in more cells. The results obtained support the view that "displaced" cholinergic amacrine cells begin to differentiate at the same time and in the same retinal region as type I cholinergic cells. Separation of the two groups is a consequence of the ramification of processes of amacrine and ganglion cells rather than a result of the secondary migration of cells between layers.  相似文献   

12.
The possibility that GABA-like immunoreactive cells of the chick retina also contain neuronal nicotinic acetylcholine receptors was investigated by means of immunohistochemical techniques. Double-labeled cell bodies containing GABA-like immunoreactivity and nicotinic receptor-like immunoreactivity were seen in the inner third of the inner nuclear layer and were presumably amacrine cells. Approximately 29-36% of the GABA-positive cells in the inner nuclear layer contained nicotinic receptor immunoreactivity. Their soma sizes ranged from 5-12 microns. Some double-labeled cells ranging from 7-21 microns were observed in the ganglion cell layer as well. Between 9-37% of the GABA-positive cells in this layer contained nicotinic receptor-like immunoreactivity. Following injection of a retrograde tracer into the optic tectum, some of the retrogradely labeled cells were also double labeled with antibodies against GABA and nicotinic receptors. This indicates that at least some of the GABA-positive cells containing nicotinic acetylcholine receptors in the ganglion cell layer are indeed ganglion cells. The present data appear to represent the first demonstration of the presence of acetylcholine receptors in GABA-containing cells in the retina, thus providing a basis for a possible influence of acetylcholine upon those presumptive GABAergic cells.  相似文献   

13.
The responses of interplexiform cells in the dace retina were recorded intracellularly and identified morphologically. The response pattern closely resembles the response of bipolar cells and amacrine cells (on- and off-types). Morphologically, the perikaryon of most of these cells lies in the amacrine cell layer, and is usually large in size. Distal and proximal processes arise from the soma directly. The distal process ramifies and extends widely in the outer plexiform layer, but does not make contact with receptor terminals. The proximal process branches and extends widely in the inner plexiform layer. The majority of these cells resembles the dopaminergic interplexiform cells, but a few resemble the glycinergic interplrxiform cells in the goldfish retina.  相似文献   

14.
The retinas of adult, male Long-Evans rats contain somatostatin-like immunoreactive material (SLI) as detected by radioimmunoassay. The SLI co-chromatographs with synthetic somatostatin-14 on both gel permeation chromatography and reversed phase high performance liquid chromatography; no somatostatin-28-like material or higher molecular weight forms have been detected. Immunocytochemical methods detect SLI in at least two cell populations. The more abundant stained cells are at the inner margin of the inner nuclear layer and give off processes which form a dense meshwork of fine, varicose fibers at the outer border of the inner plexiform layer, as well as processes which pass into other sublaminas of the inner plexiform layer. Varicose immunoreactive fibers run vertically or obliquely through the inner nuclear layer and bifurcate at its outer margin, giving rise to horizontally running fibers in the outer plexiform layer. These observations are consistent with rat retinal SLI being contained within amacrine cells, at least some of which are interplexiform cells. With cholchicine pretreatment, a more sparse population of stained cells is detected in the ganglion cell layer. These cells give rise to processes which enter the inner plexiform layer. It is not known if these are ganglion cells or displaced amacrine cells.  相似文献   

15.
The organization of GABAergic elements in the histaminergic tuberomammillary nucleus has been examined by using antibodies against gamma-aminobutyric acid (GABA) and light and electron microscopy. Most neuronal perikarya of the ventral subgroup of the tuberomammillary nucleus were GABA immunoreactive (GABA-i). The morphology of the GABA-i perikarya was similar to the morphology of histaminergic perikarya described by Hayashi et al. ('84: J. Comp. Neurol. 229: 223-241) and Wouterlood et al. ('86: J. Comp. Neurol. 252:227-243). The GABA-i perikarya were contacted by relatively few terminals. The mean bouton covering ratio of GABA-i perikarya was 6.1%, whereas the mean bouton covering ratio for GABA-i dendrites in the tuberomammillary nucleus was 31%. Some of the presynaptic terminals were GABA-i. In addition, GABA-i perikarya and dendrites formed close contacts that never presented synaptic specializations. These results suggest that neurons of the histaminergic tuberomammillary nucleus contain the neurotransmitter GABA. Furthermore, GABA may act as a modulator of cellular processes within the tuberomammillary nucleus.  相似文献   

16.
In this study we used serial section electron microscopy and three-dimensional reconstructions to examine four midget ganglion cells of the human retina. The four cells were located in the parafoveal retina 2.5 mm or 8 degrees from the foveal center. Both type a (with dendritic trees in distal inner plexiform layer) and type b (with dendritic trees in proximal inner plexiform layer) midget ganglion cells have been studied. These cells have dendritic trees of 7-9 microns diameter, and their complete dendritic trees in the neuropil of the inner plexiform layer can be analyzed, as well as the bipolar cell axon terminals having synaptic input, by a study of 100-150 serial ultrathin sections. Type a midget ganglion cells appear to be in a one-to-one relationship with flat midget bipolar cell axon terminals ending in distal inner plexiform layer. Type b midget ganglion cells are in a one-to-one synaptic relationship with invaginating midget bipolar cell axon terminals in proximal inner plexiform layer. The midget bipolar cells primarily involved with the midget ganglion cells do not contact other ganglion cell dendrites. In other words, midget bipolar cells appear to be in exclusive contact with single midget ganglion cells in the human retina. The midget ganglion cells receive most of their input from their associated midget bipolar cells in the form of ribbon synapses at dyads or monads (55-81 ribbons total), although ribbonless synapses are seen occasionally. In all four midget ganglion cells reconstructed, one or two other bipolar cell axon terminals, presumed to be from wide-field bipolar types, provide 1-3 ribbon synapses each. The number of amacrine synapses upon a midget ganglion cell's dendritic tree is approximately equal to the number of bipolar ribbon inputs (43%-56% bipolar ribbons: 44%-57% amacrine synapses). We assume from our knowledge of response characteristics of ganglion cells in other mammalian retinas (Nelson et al., '78: J. Neurophysiol. 41:427-483), that the type a midget ganglion cell and its exclusive connectivity with a flat midget bipolar cell forms a single cone connected OFF-center pathway, whereas the type b midget ganglion cell with its exclusive connectivity to an invaginating midget bipolar cell forms a single cone connected ON-center pathway, through the retina to the brain.  相似文献   

17.
18.
A Neurobiotin-injected OFF parasol cell from midperipheral macaque retina was studied by reconstruction of serial ultrathin sections and compared with ON parasol cells studied previously. In most respects, the synaptic inputs to the two subtypes were similar. Only a few of the amacrine cell processes that provided input to the labeled OFF parasol ganglion cell dendrites made or received inputs within the series, and none of these interactions were with the bipolar cells or other amacrine cells presynaptic to the OFF parasol cell. These findings suggest that the direct inhibitory input to OFF parasol cells originates from other areas of the retina. OFF parasol cells were known to receive inputs from two types of diffuse bipolar cells. To identify candidates for the presynaptic amacrine cells, OFF parasol cells were labeled with Lucifer yellow by using a juxtacellular labeling technique, and amacrine cells known to costratify with them were labeled via immunofluorescent methods. Appositions were observed with amacrine cells containing immunoreactive calretinin, parvalbumin, choline acetylatransferase, and G6-Gly, a cholecystokinin precursor. These findings suggest that the inhibitory input to parasol cells conveys information about several different attributes of visual stimuli and, particularly, about their global properties.  相似文献   

19.
The axon terminals of cone horizontal cells in the goldfish retina form typical chemical synaptic contacts in the middle of the inner nuclear layer. Approximately 60% of the identified postsynaptic elements were perikarya, axons and dendrites of bipolar cells. The other identified postsynaptic elements were perikarya and processes of interplexiform cells. We propose that the horizontal cell axon terminal contribute to the antagonistic surround responses of the bipolar cells and that they modulate inputs to the outer plexiform layer conveyed by interplexiform cells. Output synapses from horizontal cell axons to unidentified neuronal processes as well as occasional input synapses to the axons from interplexiform cell processes and unidentified perikarya were also observed in the same region of the inner nuclear layer.  相似文献   

20.
A monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was used to determine the morphological characteristics of cholinergic neurons and axon terminals within the rat septum. Light microscopy revealed numerous large fusiform or multipolar ChAT-immunoreactive neurons in the medial septal nucleus/diagonal band complex (MSDB). In contrast, virtually no immunostained cells were found in the lateral septum (Nc. septalis dorsalis and Nc. septalis lateralis). Fine immunostained fibers were most abundant close to the midline in the MSDB mainly following an ascending course. A few thin ChAT-immunoreactive fibers and terminallike pericellular punctate structures were observed in the inner part of the dorsal septal nucleus. Electron microscopy of ChAT-immunoreactive neurons revealed large cell bodies rich in cytoplasmic organelles. The cell nuclei regularly exhibited multiple invaginations of the nuclear membrane. Only rarely were terminals found that established synaptic contacts on the cell bodies of immunostained neurons. In contrast, numerous terminals formed synaptic contacts on immunoreactive dendrites. ChAT-immunopositive terminals were studied in thin sections from the MSDB and from the dorsal septal nucleus. In both regions they appeared as heavily immunostained vesicle-filled boutons that established symmetric and asymmetric synaptic contacts. In the dorsal septal nucleus immunostained terminals often showed a basketlike arrangement around immunonegative cell bodies. Our fine structural study provides evidence that cholinergic neurons in the MSDB are similar to cholinergic neurons in the basal nucleus and neostriatum, which have been described by other investigators. The presence of cholinergic synapses in the septal complex indicates that this region not only contains cholinergic projection neurons, but receives a cholinergic input itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号