首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence and coexistence of calbindin D-28k-immunoreactivity (ir) and nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase activity (a marker of neurons that are presumed to convert L-arginine to L-citrulline and nitric oxide) were examined in the glossopharyngeal and vagal sensory ganglia (jugular, petrosal and nodose ganglia) of the rat. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Some calbindin D-28k-ir nerve cells were also observed in the jugular ganglion. NADPH-diaphorase positive nerve cells were localized to the jugular and nodose ganglia and were rare in the petrosal ganglion. A considerable portion (33–51%) of the NADPH-diaphorase positive neurons in these ganglia colocalized calbindin D-28k-ir. The presence and colocalization of calbindin D-28k-ir and NADPH-diaphorase activity in neurotransmitter-identified subpopulations of visceral sensory neurons were also studied. In all three ganglia, calcitonin gene-related peptide (CGRP)-ir was present in many NADPH-diaphorase positive neurons, a subset of which also contained calbindin D-28k-ir. In the nodose ganglion, many (42%) of tyrosine hydroxylase (TH)-ir neurons also contained NADPH diaphorase activity but did not contain calbindin D-28k-ir. These data are consistent with a potential co-operative role for calbindin D-28k and NADPH-diaphorase in the functions of a subpopulation of vagal and glossopharyngeal sensory neurons.  相似文献   

2.
The coexistence of S100β with calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), nicotinamide adenosine dinucleotide phosphate-diaphorase (NADPH-d), and tyrosine hydroxylase (TH) was examined in the glossopharyngeal and vagal sensory ganglia. S100β immunoreactive (-ir) neurons in the jugular and petrosal ganglia frequently colocalized CGRP- or SP-ir, whereas S100β-ir neurons in the nodose ganglion infrequently contained CGRP- or SP-ir. No S100β-ir neurons in the jugular and petrosal ganglia showed SOM-ir while the small number of SOM-ir neurons in the nodose ganglion colocalized S100β-ir. Many neurons in the nodose ganglion colocalized S100β-ir and NADPH-d activity, whereas S100β-ir neurons in the jugular and nodose ganglia infrequently contained NADPH-d activity. S100β- and TH-ir were frequently colocalized in nodose ganglion but not in petrosal or jugular ganglion neurons. These findings suggest relationships between S100β and specific putative transmitters in functions of subpopulations of vagal and glossopharyngeal sensory neurons.  相似文献   

3.
ASIC3-immunoreactivity (ir) was examined in the rat vagal and glossopharyngeal sensory ganglia. In the jugular, petrosal and nodose ganglia, 24.8%, 30.8% and 20.6% of sensory neurons, respectively, were immunoreactive for ASIC3. These neurons were observed throughout the ganglia. A double immunofluorescence method demonstrated that many ASIC3-immunoreactive (ir) neurons co-expressed calcitonin gene-related peptide (CGRP)- or vanilloid receptor subtype 1 (VRL-1)-ir in the jugular (CGRP, 77.8%; VRL-1, 28.0%) and petrosal ganglia (CGRP, 61.7%; VRL-1, 21.5%). In the nodose ganglion, however, such neurons were relatively rare (CGRP, 6.3%; VRL-1, 0.4%). ASIC3-ir neurons were mostly devoid of tyrosine hydroxylase in these ganglia. However, some ASIC3-ir neurons co-expressed calbindin D-28k in the petrosal (5.5%) and nodose ganglia (3.8%). These findings may suggest that ASIC3-containing neurons have a wide variety of sensory modalities in the vagal and glossopharyngeal sensory ganglia.  相似文献   

4.
Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10–100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

5.
The cell body size (cross-sectional area) of S100-immunoreactive (-ir) primary neurons was measured in the trigeminal (TG) and lumbar dorsal root ganglia (DRG). About a half of neurons exhibited S100-immunoreactivity (-ir) in the DRG (44.0%) and TG (59.0%). DRG neurons with cell bodies >1200 μm2 mostly exhibited S100-ir (96.5%), whereas S100-ir DRG neurons <600 μm2 were rare (8.0%). 36.6% of DRG neurons in the cell size range 600–1200 μm2 showed the ir. TG neurons >800 μm2 mostly exhibited S100-ir (93.1%), whereas those <400 μm2 were devoid of it (positive cells 10.5%). 58.3% of TG cells in the range 400–800 μm2 contained S100-ir. Double-immunofluorescence method revealed the co-expression of S100 and other calcium-binding proteins. Parvalbumin-ir neurons mostly exhibited S100-ir in the DRG (97.4%) and TG (97.0%). The co-expression of S100 and calbindin D-28k was very rare in the DRG, because the DRG contained few calbindin D-28k-ir neurons. Unlike in the DRG, numerous neurons co-expressed S100- and calbindin D-28k-ir in the TG. Most calbindin D-28k-ir TG neurons were also immunoreactive for S100 (90.7%). Sub-populations of calretinin (CR)-ir neurons co-expressed S100-ir in both the DRG (68%) and TG (50.0%). Virtually all CR-ir neurons >1400 μm2 co-expressed S100-ir in the DRG (100%) and TG (95.9%). CR-ir neurons <800 μm2 were rarely exhibited S100-ir (DRG 18.0%, TG 21.9%). 71.3 and 60.5% of CR-ir neurons in the range 800–1400 μm2 co-expressed S100-ir in the DRG and TG, respectively. The present study indicates that S100 is closely correlated to the primary neuronal cell size in the DRG and TG.  相似文献   

6.
The co-expression of vanilloid receptor 1-like receptor (VRL-1), a newly cloned capsaicin-receptor homologue, with calbindin D-28k was examined in the rat sensory ganglia. The co-expression was rare in the dorsal root, trigeminal and jugular ganglia and abundant in the petrosal and nodose ganglia. In the dorsal root ganglion, none of VRL-1-immunoreactive (ir) neuron co-expressed calbindin D-28k-immunoreactivity (ir). Of the VRL-1-ir neurons, 9 and 5% showed calbindin D-28k ir in the trigeminal and jugular ganglia, respectively. On the other hand, 35 and 63% of VRL-1-ir neurons in the petrosal and nodose ganglia, respectively, co-expressed these substances. The retrograde tracing method indicated that petrosal neurons which co-expressed VRL-1-and calbindin D-28k-ir innervated taste buds in the circumvallate papilla. The present findings may suggest that VRL-1 is associated with chemosensory functions in visceral sensory neurons.  相似文献   

7.
Peptide 19-immunoreactivity (PEP 19-IR) was examined in the trigeminal ganglion (TG) of the adult rat. A half of TG neurons were immunoreactive(IR) for PEP 19. PEP 19-IR neurons were mostly medium-sized to large. 66% of TG neurons > 600 microm(2) and 38% of those in the range 300-600 microm(2) showed the IR. TG neurons <300 microm(2) were mostly devoid of PEP 19-IR (86%). A double immunofluorescence method revealed the coexpression of PEP 19 and calcium-binding proteins. 31% and 16% of PEP 19-IR neurons exhibited parvalbumin- and calbindin D-28k-IRs, respectively. Conversely, a half of parvalbumin- (53%) and calbindin D-28k-IR (55%) neurons coexpressed PEP 19-IR. PEP 19-IR neurons were mostly IR for S100 (91%) and 80% of S100-IR neurons showed PEP 19-IR. Virtually all (99%) PEP 19-IR neurons were devoid of calcitonin gene-related peptide (CGRP)-IR. The molar tooth pulp contained PEP 19-IR nerve fibers. In the root pulp, PEP 19-IR nerve fibers projected straight until they reached the coronal pulp. Accompanied by blood vessels, these nerve fibers ascended toward the pulp horn. They formed nerve plexuses in the subodontoblastic layer, and reached the base of the odontoblastic layer. However, PEP 19-IR nerve fibers could not be observed within the odontoblastic layer, predentine or dentine. The distribution of these nerve fibers was similar to that of parvalbumin-IR ones. In the TG, PEP 19-IR was found in 34% of primary sensory neurons retrogradely labeled from the molar tooth pulp. 80% of PEP 19-IR tooth pulp TG neurons coexpressed parvalbumin-IR. An immunoelectron microscopic method revealed that a half of radicular axons showed PEP 19-IR. 80% of myelinated axons exhibited PEP 19-IR, whereas 20% of unmyelinated ones showed the IR. In the subodontoblastic layer, PEP 19-IR nerve fibers mostly lost myelin sheath or Schwann cell ensheathment. At the base of the odontoblastic layer, PEP 19-IR neurites made close contact with odontoblasts. PEP 19-IR nerve endings could not be observed in other oro-facial tissues. The coexpression of PEP 19 and CaBPs suggests that low-threshold mechanoreceptors contain PEP 19-IR in the TG. It is also likely that PEP 19-IR TG neurons include myelinated nociceptors.  相似文献   

8.
Immunoreactivity for the calcium binding protein, calretinin (calretinin-ir), was demonstrated in cell bodies of vagal and glossopharyngeal sensory ganglia (jugular, petrosal, and nodose ganglia) and in associated nerve fibers. In the jugular and petrosal ganglia, many calretinin-ir neurons were also immunoreactive for calcitonin gene-related peptide and substance P. In the nodose ganglion, most of the calretinin-ir neurons lacked these peptides. None of the calretinin-ir neurons in these ganglia were also immunoreactive for tyrosine hydroxylase.  相似文献   

9.
The presence and coexistence of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) were studied in the petrosal and jugular neurons innervating the carotid body and carotid sinus of the rat. The retrograde labeling of the carotid sinus nerve with Fluoro-gold (FG) demonstrated that most (94.5%) FG-labeled ganglionic neurons were observed in the petrosal ganglion. Fewer (5.2%) FG-labeled neurons were seen in the jugular ganglion and very few (0.3%) were observed in the nodose ganglion. Immunohistochemistry revealed that subpopulations of TH-, VIP-, CGRP-, SP- and GAL-immunoreactive (-ir) neurons in the petrosal ganglion projected to the carotid sinus nerve. Approximately 4% of FG-labeled neurons contained TH-ir and were predominantly found in the caudal portion of the petrosal ganglion. Nearly 90% of total TH-ir neurons in the petrosal ganglion were labeled with FG. Less than 1% of FG-labeled neurons were immunoreactive for VIP in this ganglion. In the petrosal ganglion, 25% of FG-labeled neurons contained CGRP-ir, and 16.7% of FG-labeled neurons contained SP-ir. 30% of CGRP-ir or SP-ir neurons in the petrosal ganglion were labeled with FG. In the jugular ganglion, no TH- or VIP-ir neurons projected to the carotid sinus nerve and only small populations of CGRP- or SP-ir neurons projected to the carotid sinus nerve. Many FG-labeled and GAL-ir neurons were observed in the petrosal and jugular ganglia. The double-immunofluorescence method revealed the coexistence of CGRP- and SP-ir in carotid sinus nerve-projecting neurons in the petrosal and jugular ganglia. Likewise, GAL-ir coexisted with CGRP- and SP-ir in these ganglionic neurons. There was no coexistence of TH-ir and VIP-ir in carotid sinus nerve projections. The present study demonstrates the presence of multiple putative transmitters in baro- and chemoreceptor afferent neurons of the carotid sinus nerve. These neurochemicals are likely to contribute to transmission of signals from the carotid body and carotid sinus to neurons of the brainstem.  相似文献   

10.
Co-localization of μ-opioid receptor (MOR)-like immunoreactivity (-LI) with substance P (SP)-LI, calcitonin gene-related peptide (CGRP)-LI and nitric oxide synthase (NOS)-LI in the nodose, petrosal and jugular ganglia was examined in the rat by a double immunofluorescence histochemical method. About 0.6%, 41% and 95% of neurons with MOR-LI, respectively, in the nodose, petrosal and jugular ganglia showed SP-LI; about 2%, 51% and 66% of MOR-like immunoreactive neurons displayed CGRP-LI in the nodose, petrosal and jugular ganglia, respectively. In addition, about 59% of MOR-like immunoreactive neurons in the nodose ganglia displayed NOS-LI, whereas no NOS-LI was detected in the petrosal or jugular ganglion. These data provide evidence for co-localization of MOR-LI with SP-LI, CGRP-LI and NOS-LI in the vagal and glossopharyngeal afferent neurons, and suggest that MOR may regulate the release of SP, CGRP and nitric oxide from the visceral primary afferent terminals in the nucleus of the solitary tract of the rat.  相似文献   

11.
Immunohistochemistry was applied to examine the correlation between neuropeptide Y (NPY) and the two calcium binding proteins (CaBPs) parvalbumin (PV) and calbindin D28k (CB) in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve (IAN) in the rat. Five days following transection and application of FluoroGold (FG) to the cut end of the IAN, approximately 14.8% (80/539) and 18.6% (90/483) of FG-labeled IAN neurons in the trigeminal ganglion showed PV-like immunoreactivity (-LI) and CB-LI, respectively. The mean ± S.D. area of FG-labeled PV-like immunoreactive (-IR) cells (FG/PV-IR cells) and FG/CB-IR cells were 835.9 ± 303.1 μm2 and 712.7 ± 246.0 μm2, respectively. FG/PV-IR cells were significantly larger than FG/CB-IR cells. Fourteen days following peripheral axotomy of the IAN, NPY-LI appeared in the medium- to large-sized cells. Double immunostaining revealed that approximately 3.3% (52/1569) of NPY-IR cells in the axotomized trigeminal ganglion displayed PV-LI, while approximately 26.7% (371/1392) of NPY-IR cells displayed CB-LI. The mean ± S.D. cross-sectional areas of PV-IR and CB-IR trigeminal ganglion cells displaying NPY-LI were 819.5 ± 265.6 μm2 and 766.5 ± 279.7 μm2, respectively. There were no significant differences in the cross-sectional areas either between NPY/PV-IR cells and NPY/CB-IR cells, or between FG/PV-IR cells and NPY/PV-IR cells, or between FG/CB-IR cells and NPY/CB-IR cells. The present results indicate that injury-evoked medium- to large-sized NPY neurons were a different population from large-sized PV neurons, and NPY was partly co-localized with CB.  相似文献   

12.
13.
Immunohistochemistry for two nociceptive transducers, the vanilloid receptor 1 (VR1) and vanilloid receptor 1-like receptor (VRL-1), was performed on the vagal sensory ganglia. In the jugular ganglion, VR1-immunoreactive (IR) neurons were small to medium-sized (range 49.7–1125.6 μm2, mean±S.D. 407.7±219.7 μm2), whereas VRL-1-IR neurons were medium-sized to large (range 223.6–1341.1 μm2, mean±S.D. 584.3±253.5 μm2). In the nodose ganglion, VR1- and VRL-1-IR neurons were mostly small to medium-sized (VR1: range 148.5–1464.4 μm2, mean±S.D. 554.3±207.4 μm2; VRL-1: range 161.7–1166.2 μm2, mean±S.D. 541.9±186.2 μm2). The double immunofluorescence method revealed that co-expression of VR1-immunoreactivity among VRL-1-IR neurons was more abundant in the nodose ganglion (63%) than in the jugular ganglion (4%). The present study suggests that co-expression of VR1 and VRL-1 may be more common in visceral sensory neurons than in somatic sensory neurons.  相似文献   

14.
Immunohistochemistry for two nociceptive transducers, the vanilloid receptor 1 (VR1) and vanilloid receptor 1-like receptor (VRL-1), was performed on the vagal sensory ganglia. In the jugular ganglion, VR1-immunoreactive (IR) neurons were small to medium-sized (range 49.7–1125.6 μm2, mean±S.D. 407.7±219.7 μm2), whereas VRL-1-IR neurons were medium-sized to large (range 223.6–1341.1 μm2, mean±S.D. 584.3±253.5 μm2). In the nodose ganglion, VR1- and VRL-1-IR neurons were mostly small to medium-sized (VR1: range 148.5–1464.4 μm2, mean±S.D. 554.3±207.4 μm2; VRL-1: range 161.7–1166.2 μm2, mean±S.D. 541.9±186.2 μm2). The double immunofluorescence method revealed that co-expression of VR1-immunoreactivity among VRL-1-IR neurons was more abundant in the nodose ganglion (63%) than in the jugular ganglion (4%). The present study suggests that co-expression of VR1 and VRL-1 may be more common in visceral sensory neurons than in somatic sensory neurons.  相似文献   

15.
The distributions of calbindin D-28K (CaBP) and parvalbumin (PV) in the rat nucleus olfactorius anterior (NOA) were described using monoclonal antibodies and the avidin-biotin-peroxidase method. The NOA showed a high immunoreactivity for CaBP, with a rostrocaudal increase in the positive neurons and fibres. Pars externa (NOAe) was the only subdivision which showed a low CaBP immunostaining. PV-positive elements were less abundant than those CaBP immunostained. The main difference in the distributions for both proteins was observed in the pars medialis which was practically PV negative. PV- and CaBP-stained neurons showed similar morphologies in the subdivisions where they were present. In NOAe, we observed a characteristic PV- and CaBP-positive neuronal type, with an oriented dendritic pattern. Transition areas were clearly observable in both CaBP- and PV-labelled sections.  相似文献   

16.
Calcitonin gene-related peptide (alpha CGRP) and galanin (GAL) are peptides known to participate in central mechanisms of blood pressure control. Nonetheless, variations in the synthesis of the peptides in response to a hypertensive challenge are not well described, specially using a model, which allows acute and chronic analyses. In this study, we have employed in situ hybridization to analyse changes in mRNA expression of alpha CGRP and GAL in the nucleus tractus solitarii (NTS), hypothalamic paraventricular nucleus (PVN) as well as petrosal and nodose ganglia after aortic coarctation-induced hypertension in rats. Acute (2h) and chronic (3 and 7 days) analyses were performed in order to evaluate the involvement of both peptides in different periods of hypertension. The analysis of relative mRNA levels showed significant differences between sham-operated and aortic coarcted hypertensive rats. alpha CGRP mRNA expression was decreased 2h (40%) and 3 days (42%) in nodose and petrosal ganglia, respectively, after coarctation. No changes in CGRP mRNA signal were seen in the NTS and PVN in the analysed periods. GAL mRNA expression was decreased in the NTS (19%) and PVN (55%), 3 and 7 days, respectively, after coarctation-induced hypertension. No changes in GAL mRNA expression were observed in petrosal and nodose ganglia following aortic coarctation. Data suggest that alpha CGRP and GAL may participate in the mechanisms involved in the establishment/maintenance of hypertension induced by aortic coarctation. Acute changes might be involved with the adaptation to the hypertensive state, while changes at the chronic phase might be related to counteraction of hypertension.  相似文献   

17.
In some neurological diseases, injury to neurones reflects an over-stimulation of their receptors for excitatory amino acids. This response may disturb the Ca(2+)-homeostasis and lead to a pronounced and sustained increase in the intracellular concentration of this ion. On the basis of data derived from correlative studies, calcium-binding proteins have been postulated to play a protective role in these pathologies. We tested, directly, the capacity of the three calcium-binding proteins calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) to buffer [Ca(2+)], and to protect cells against excitotoxic death. We used P19 murine embryonic carcinoma cells, which can be specifically induced (by retinoic acid) to transform into nerve-like ones. The differentiated cells express functional glutamate-receptors and are susceptible to excitotoxic shock. Undifferentiated P19-cells were stably transfected with the cDNA for CR, CB or PV, induced to differentiate, and then exposed to NMDA, a glutamate-receptor agonist. The survival rates of clones expressing CR, CB or PV were compared with those of untransfected P19-cells using the lactate-dehydrogenase assay. CR- and CB-expressing cells were protected from death during the first 2 h of exposure to NMDA. This protection was, however, transient, and did not suffice to rescue P19-cells after prolonged stimulation. Two of the three PV-transfected clones raised were vulnerable to NMDA-induced excitotoxicity; the third, which expressed the lowest level of PV, was protected to a similar degree as that found for the CR- and CB-transfected clones. Our results indicate that in the P19-cell model, CR and CB can help to delay the onset of cell death after excitotoxic stimulation.  相似文献   

18.
1200 micrometer(2) and 9% of those in the range 600-1200 micrometer(2) showed the immunoreactivity (ir). DRG neurons <600 micrometer(2)800 micrometer(2) showed the ir and 21% of those in the range 400-800 micrometer(2) were immunoreactive for this protein. TG neurons <400 micrometer(2) were mostly devoid of OPN-ir (2%). Virtually all (99%) Mes5 primary sensory neurons exhibited the ir. Muscle spindles in the soleus and masseter muscles contained OPN-ir spiral axon terminals. In the hard palate and incisor periodontal ligament, unencapsulated corpuscular endings exhibited the ir. The co-expression of OPN with parvalbumin and calcitonin gene-related peptide (CGRP) was also examined in the DRG and TG. In the DRG, virtually all (97%) OPN-ir neurons exhibited parvalbumin-ir. Conversely, 66% of parvalbumin-ir DRG neurons co-expressed OPN-ir. In the TG, 81% of OPN-ir neurons exhibited parvalbumin-ir and 69% of parvalbumin-ir ones showed OPN-ir. Virtually all OPN-ir DRG and TG neurons were devoid of CGRP-ir. The present study indicates that OPN-ir primary sensory neurons in the DRG and Mes5 are spinal and trigeminal proprioceptors. OPN-ir TG neurons appear to include low-threshold mechanoreceptors.  相似文献   

19.
Immunohistochemistry for osteocalcin (OC) was performed on the rat vagal and glossopharyngeal sensory ganglia. OC-immunoreactive (IR) neurons were detected in the jugular (10%), petrosal (11%) and nodose ganglia (6%). The cell size analysis demonstrated that OC-IR neurons were predominantly small to medium-sized in the jugular ganglion (mean+/-S.D.=356.3+/-192.2 microm(2), range=86.5-831.5 microm(2)). On the other hand, such neurons were medium-sized to large in the petrosal (mean+/-S.D.=725.6+/-280.7 microm(2), range=124.7-1540.4 microm(2)) and nodose ganglia (mean+/-S.D.=857.5+/-330.2 microm(2), range=367.1-1608.0 microm(2)). In the circumvallate papilla, OC-IR nerve fibers were located in the vicinity of taste buds. Some taste bud cells were also immunoreactive for the calcium-binding protein (CaBP). In the carotid body, however, OC-IR nerve fibers could not be detected. Retrograde tracing with fluorogold revealed that OC-IR nerve fibers in the circumvallate papilla mainly originated from the petrosal ganglion. These findings may suggest that OC-IR petrosal neurons have chemoreceptive function in the tongue.  相似文献   

20.
Visceral afferent neurons of the nodose and petrosal ganglia are immunoreactive (ir) for many neurotransmitters [e.g., substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), and dopamine (tyrosine hydroxylase-ir; TH)]. Coexistence of SP-ir with NKA-, CGRP-, or TH-ir was studied in individual neurons of the rat ganglia using fluorescence immunocytochemistry. SP- and NKA-ir were present in equal numbers of cells and were consistently colocalized. SP- and CGRP-ir were found to be similarly distributed in scattered cells, concentrated mostly in the rostral pole of the nodose ganglion and in the petrosal ganglion. SP-ir completely coexisted with CGRP-ir. However, there was at least twice the number of CGRP-ir neurons as SP-ir neurons, and thus CGRP-ir neurons that did not contain SP-ir were also present. In contrast, SP- and TH-ir had different distributions in both the nodose and the petrosal ganglia. SP-ir was located in the more rostral regions of both the nodose and petrosal ganglia, whereas TH-ir was detected throughout the entire nodose ganglion and only in the most caudal region of the petrosal ganglion. There was no coexistence of SP- and TH-ir. These data demonstrate the differential localization and coexistence of putative transmitters in visceral sensory neurons in the nodose and petrosal ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号