首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel homomorphic wavelet thresholding technique for reducing speckle noise in medical ultrasound images is presented. First, we show that the speckle wavelet coefficients in the logarithmically transformed ultrasound images are best described by the Nakagami family of distributions. By exploiting this speckle model and the Laplacian signal prior, a closed form, data-driven, and spatially adaptive threshold is derived in the Bayesian framework. The spatial adaptivity allows the additional information of the image (such as identification of homogeneous or heterogeneous regions) to be incorporated into the algorithm. Further, the threshold has been extended to the redundant wavelet representation, which yields better results than the decimated wavelet transform. Experimental results demonstrate the improved performance of the proposed method over other well-known speckle reduction filters. The application of the proposed method to a realistic US test image shows that the new technique, named HomoGenThresh, outperforms the best wavelet-based denoising method reported in [1] by more than 1.6 dB, Lee filter by 3.6 dB, Kaun filter by 3.1 dB and band-adaptive soft thresholding [2] by 2.1 dB at an input signal-to-noise ratio (SNR) of 13.6 dB.  相似文献   

2.
In this article the authors propose a novel interslice coding algorithm especially appropriate for medical 3-dimensional (3D) images. The proposed algorithm is based on a video coding algorithm using motion estimation/compensation and transform coding. In the algorithm, warping is adopted for motion compensation. Then, by using adaptive mode selection, an MC residual image and original image are mixed up in the wavelet transform domain for improvement in coding performance. The mixed image is then compressed by the zerotree coding method. It is proven that the adaptive mode selection technique in the wavelet transform domain is very useful for medical 3D image coding. Simulation results show that the proposed scheme provides good performance, regardless of interslice distance, and is prospective for medical 3D image compression.  相似文献   

3.
This paper proposes some modifications to the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) image coder based on statistical analysis of the wavelet coefficients across various subbands and scales, in a medical ultrasound (US) image. The original SPIHT algorithm codes all the subbands with same precision irrespective of their significance, whereas the modified algorithm processes significant subbands with more precision and ignores the least significant subbands. The statistical analysis shows that most of the image energy in ultrasound images lies in the coefficients of vertical detail subbands while diagonal subbands contribute negligibly towards total image energy. Based on these statistical observations, this work presents a new modified SPIHT algorithm, which codes the vertical subbands with more precision while neglecting the diagonal subbands. This modification speeds up the coding/decoding process as well as improving the quality of the reconstructed medical image at low bit rates. The experimental results show that the proposed method outperforms the original SPIHT on average by 1.4 dB at the matching bit rates when tested on a series of medical ultrasound images. Further, the proposed algorithm needs 33% less memory as compared to the original SPIHT algorithm.  相似文献   

4.
This paper proposes some modifications to the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) image coder based on statistical analysis of the wavelet coefficients across various subbands and scales, in a medical ultrasound (US) image. The original SPIHT algorithm codes all the subbands with same precision irrespective of their significance, whereas the modified algorithm processes significant subbands with more precision and ignores the least significant subbands. The statistical analysis shows that most of the image energy in ultrasound images lies in the coefficients of vertical detail subbands while diagonal subbands contribute negligibly towards total image energy. Based on these statistical observations, this work presents a new modified SPIHT algorithm, which codes the vertical subbands with more precision while neglecting the diagonal subbands. This modification speeds up the coding/decoding process as well as improving the quality of the reconstructed medical image at low bit rates. The experimental results show that the proposed method outperforms the original SPIHT on average by 1.4 dB at the matching bit rates when tested on a series of medical ultrasound images. Further, the proposed algorithm needs 33% less memory as compared to the original SPIHT algorithm.  相似文献   

5.
This presentation focuses on the quantitative comparison of three lossy compression methods applied to a variety of 12-bit medical images. One Joint Photographic Exports Group (JPEG) and two wavelet algorithms were used on a population of 60 images. The medical images were obtained in Digital Imaging and Communications in Medicine (DICOM) file format and ranged in matrix size from 256 × 256 (magnetic resonance [MR]) to 2,560 × 2,048 (computed radiography [CR], digital radiography [DR], etc). The algorithms were applied to each image at multiple levels of compression such that comparable compressed file sizes were obtained at each level. Each compressed image was then decompressed and quantitative analysis was performed to compare each compressed-thendecompressed image with its corresponding original image. The statistical measures computed were sum of absolute differences, sum of squared differences, and peak signal-to-noise ratio (PSNR). Our results verify other research studies which show that wavelet compression yields better compression quality at constant compressed file sizes compared with JPEG. The DICOM standard does not yet include wavelet as a recognized lossy compression standard. For implementers and users to adopt wavelet technology as part of their image management and communication installations, there has to be significant differences in quality and compressibility compared with JPEG to justify expensive software licenses and the introduction of proprietary elements in the standard. Our study shows that different wavelet implementations vary in their capacity to differentiate themselves from the old, established lossy JPEG.  相似文献   

6.
In this paper, an efficient technique for compression of medical ultrasound (US) images is proposed. The technique is based on wavelet transform of the original image combined with vector quantization (VQ) of high-energy subbands using the LBG algorithm. First, we analyse the statistical behaviour of wavelet coefficients in US images across various subbands and scales. The analysis show that most of the image energy is concentrated in one of the detail subband, either in the vertical detail subband (most of the time) or in the horizontal subband. The other two subbands at each decomposition level contribute negligibly to the total image energy. Then, by exploiting this statistical analysis, a low-complexity image coder is designed, which applies VQ only to the highest energy subband while discarding the other detail subbands at each level of decomposition. The coder is tested on a series of abdominal and uterus greyscale US images. The experimental results indicate that the proposed method clearly outperforms the JPEG2000 (Joint Photographers Expert Group) encoder both qualitatively and quantitatively. For example, without using any entropy coder, the proposed method yields a peak signal to noise ratio gain of 0.2 dB to 1.2 dB over JPEG2000 on medical US images.  相似文献   

7.
Lossy image compression is thought to be a necessity as radiology moves toward a filmless environment. Compression algorithms based on the discrete cosine transform (DCT) are limited due to the infinite support of the cosine basis function. Wavelets, basis functions that have compact or nearly compact support, are mathematically better suited for decorrelating medical image data. A lossy compression algorithm based on semiorthogonal cubic spline wavelets has been implemented and tested on six different image modalities (magnetic resonance, x-ray computed tomography, single photon emission tomography, digital fluoroscopy, computed radiography, and ultrasound). The fidelity of the reconstructed wavelet images was compared to images compressed with a DCT algorithm for compression ratios of up to 40:1. The wavelet algorithm was found to have generally lower average error metrics and higher peak-signal-to-noise ratios than the DCT algorithm.  相似文献   

8.
医学图像无损压缩与有损压缩技术的进展   总被引:5,自引:0,他引:5  
本文对医学图像无损压缩和有损压缩的概念和应用进行了分析比较 ,并简要介绍了几种近年来发展的图像无损压缩方法 ,重点介绍了有损压缩中的小波图像压缩技术和分形图像压缩技术。在医学图像的压缩中 ,通过有效地结合无损压缩和有损压缩技术 ,可以在得到医学要求的图像保真度的前提上 ,达到较高的压缩比  相似文献   

9.
计算机在超声医学图像处理中的应用   总被引:2,自引:0,他引:2  
介绍了计算机在超声医学图像处理领域的应用,着重讨论了超声医学成像和超声医学图像管理的方法与应用,具体分析了医院医学图像存档及通信系统(PACS)中B超影像工作站的结构与功能。  相似文献   

10.
Most existing wavelet-based image denoising techniques are developed for additive white Gaussian noise. In applications to speckle reduction in medical ultrasound (US) images, the traditional approach is first to perform the logarithmic transform (homomorphic processing) to convert the multiplicative speckle noise model to an additive one, and then the wavelet filtering is performed on the log-transformed image, followed by an exponential operation. However, this non-linear operation leads to biased estimation of the signal and increases the computational complexity of the filtering method. To overcome these drawbacks, an efficient, non-homomorphic technique for speckle reduction in medical US images is proposed. The method relies on the true characterisation of the marginal statistics of the signal and speckle wavelet coefficients. The speckle component was modelled using the generalised Nakagami distribution, which is versatile enough to model the speckle statistics under various scattering conditions of interest in medical US images. By combining this speckle model with the generalised Gaussian signal first, the Bayesian shrinkage functions were derived using the maximum a posteriori (MAP) criterion. The resulting Bayesian processor used the local image statistics to achieve soft-adaptation from homogeneous to highly heterogeneous areas. Finally, the results showed that the proposed method, named GNDShrink, yielded a signal-to-noise ratio (SNR) gain of 0.42 dB over the best state-of-the-art despeckling method reported in the literature, 1.73 dB over the Lee filter and 1.31 dB over the Kaun filter at an input SNR of 12.0 dB, when tested on a US image. Further, the visual comparison of despeckled US images indicated that the new method suppressed the speckle noise well, while preserving the texture and organ surfaces.  相似文献   

11.
A novel speckle-reduction method is introduced, based on soft thresholding of the wavelet coefficients of a logarithmically transformed medical ultrasound image. The method is based on the generalised Gaussian distributed (GGD) modelling of sub-band coefficients. The method used was a variant of the recently published BayesShrink method by Chang and Vetterli, derived in the Bayesian framework for denoising natural images. It was scale adaptive, because the parameters required for estimating the threshold depend on scale and sub-band data. The threshold was computed by Kσ/σx, where σ and σx were the standard deviation of the noise and the sub-band data of the noise-free image, respectively, and K was a scale parameter. Experimental results showed that the proposed method outperformed the median filter and the homomorphic Wiener filter by 29% in terms of the coefficient of correlation and 4% in terms of the edge preservation parameter. The numerical values of these quantitative parameters indicated the good feature preservation performance of the algorithm, as desired for better diagnosis in medical image processing.  相似文献   

12.
We present an analysis of different filter banks for the compression of magnetic resonance (MR) images of the human brain using wavelet packets based on biorthogonal filters. Initially, peak signal to noise ratio (PSNR) and normalized root mean square (RMS) error criteria are calculated for a series of images compressed with a 33:1 ratio, using filter banks based on biorthogonal wavelet packets. The results lead us to choose a few of these filter banks as optimal for image compression. One of these filters is employed to compress several images at four different compression ratios: 12.5:1, 25:1, 37.5:1 and 50:1. The quality of these images was evaluated by visual analysis by a group of seven experts who graded image quality on a 0-7 scale. Results show that using these filters, we can compress images to a rate of around 30:1 without introducing noticeable differences. Other applications for these filters are currently under study and include the compression/fusion of MR image stacks in order to obtain even better reductions in the amount of data needed to reconstruct complete MRI studies.  相似文献   

13.
小波变换的阈值选取及其在细胞图像去噪中的应用   总被引:2,自引:2,他引:0  
阈值的选择是小波去噪的关键技术之一,但软硬阈值各有其缺陷.本文分析了自适应阈值的优点,进而提出逐点噪声方差法在去噪方面有更强的优势.仿真结果表明:采用自适应闭值并结合具有更强自适应性的逐点噪声方差法不仅能提高医学图像的峰值信噪比,还能有效地降低由传统阈值所带来的方块效应.  相似文献   

14.
Compression of medical images has always been viewed with skepticism, since the loss of information involved is thought to affect diagnostic information. However, recent research indicates that some waveletbased compression techniques may not effectively reduce the image quality, even when subjected to compression ratios up to 30∶1. The performance of a recently designed wavelet-based adaptive vector quantization is compared with a well-known waveletbased scalar quantization technique to demonstrate the superiority of the former technique at compression ratios higher than 30∶1. The use of higher compression with high fidelity of the reconstructed images allows fast transmission of images over the Internet for prompt inspection by radiologists at remote locations in an emergency situation, while higher quality images follow in a progressive manner if desired. Such fast and progressive transmission can also be used for downloading large data sets such as the Visible Human at a quality desired by the users for research or education. This new adaptive vector quantization uses a neural networks-based clustering technique for efficient quantization of the wavelet-decomposed subimages, yielding minimal distortion in the reconstructed images undergoing high compression. Results of compression up to 100∶1 are shown for 24-bit color and 8-bit monochrome medical images.  相似文献   

15.
作为图像存诸和传输系统(picture archiving & communication system,PACS)的关键技术之一,医学图像压缩算法的优劣对PACS的性能有着重要的影响,小波分析由于其多分辨率分析特性而在医学图像压缩中得到了广泛应用.从小波变换医学图像压缩、小波包变换医学图像压缩和多小波变换医学图像压缩三个方面综述了小波医学图像压缩方法及其进展,总结对比了这些方法的优点和缺陷,并针对其不足之处提出了改进方向.  相似文献   

16.
选择舒适合体的医用梯度压力袜(MGCS)是确保患者依从性和临床治疗效果的关键,而全面准确地认识压力袜的材料力学性能是临床选择MGCS产品的基础。但是,目前对MGCS的认识还不够充分,对于临床应用MGCS的最佳方案还存在争议。本研究以新版临床实践指南和共识文件为基础,结合最新文献,综述了MGCS的产品特征、材料力学性能和病理生理学机制,简要阐述MGCS的临床选择方案,旨在为临床实践中规范使用MGCS提供决策参考。  相似文献   

17.
Pulse compression techniques that are capable of producing a large signal-to-noise (SNR) enhancement, have been used successfully in many different fields. For medical applications, frequency-dependent attenuation in soft tissue can limit the usefulness of this method. In the paper, this issue is examined through model-simulation studies. Frequency-modulation (FM) chirp, considered in the study, is just one form of pulse coding technique. Pulse propagation effects in soft tissue are modelled as a linear zero phase filter. A method to perform simulations and estimate the effective time-bandwidth product K is outlined. K describes the SNR enhancement attainable under limitations imposed by the soft-tissue medium. An effective time-bandwidth product is evaluated as a function of soft-tissue linear attenuation coefficient αo, scatterer depth z and the bandwidth of the interrogating FM pulse, under realistic conditions. Results indicate that, under certain conditions, K can be significantly lower than its expected value in a non-attenuating medium. It is argued that although limitations exist, pulse compression techniques can still be used to improve resolution or increase penetrational depth. The real advantage over conventional short-pulse imaging comes from the possibility that these improvements can be accomplished without increasing the peak intensity of the interrogating pulse above any threshold levels set by possible bio-effect considerations.  相似文献   

18.
设计了医学图像无损压缩的Huffman具体算法,采用C 语言进行实现,并对其影响因素进行了研究探讨.结果 表明:Huffman算法在医学图像的压缩中可以取得良好的压缩效果,实现医学图像的无损压缩,并得出了其具体的影响因素.  相似文献   

19.
This paper presents a combined wavelet and a modified runlength encoding scheme for the compression of electrocardiogram (ECG) signals. First, a discrete wavelet transform is applied to the ECG signal. The resulting coefficients are classified into significant and insignificant ones based on the required PRD (percent root mean square difference). Second, both coefficients are encoded using a modified run-length coding method. The scheme has been tested using ECG signals obtained from the MIT-BIH Compression Database. A compression of 20:1 (which is equivalent to 150 bit per second) is achieved with PRD less than 10.  相似文献   

20.
This paper proposes an efficient compression scheme for compressing time-varying medical volumetric data. The scheme uses 3-D motion estimation to create a homogenous preprocessed data to be compressed by a 3-D image compression algorithm using hierarchical vector quantization. A new block distortion measure, called variance of residual (VOR), and three 3-D fast block matching algorithms are used to improve the motion estimation process in term of speed and data fidelity. The 3-D image compression process involves the application of two different encoding techniques based on the homogeneity of input data. Our method can achieve a higher fidelity and faster decompression time compared to other lossy compression methods producing similar compression ratios. The combination of 3-D motion estimation using VOR and hierarchical vector quantization contributes to the good performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号