首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu Q  Moraes MP  Grubman MJ 《Virus research》2003,93(2):211-219
Human adenovirus type 5 (Ad5) has been evaluated as a novel gene delivery vector for the development of live-viral vaccines for foot-and-mouth disease (FMD). In this study, we constructed an Ad5 vector co-expressing the capsid precursor proteins, P1, of FMD virus (FMDV) field strains A24 Cruzeiro and O1 Campos and examined the neutralizing antibody responses in swine after inoculation with the vector. To construct the Ad5 vector, a bicistronic expression cassette containing a cytomegalovirus promoter, the P1 coding sequence of FMDV A24, the internal ribosomal entry site (IRES) of FMDV A12, the P1 coding sequence of FMDV O1 Campos and the coding region of A12 3C protease was inserted into the E1 region of an E1/E3-deleted Ad5. The recombinant adenovirus, Ad5A24+O1, was generated by transfection of 293 cells with full-length pAd5A24+O1 recombinant plasmid DNA. The recombinant Ad5 co-expressed P1 of both A24 and O1 in infected 293 cells and P1 of both serotypes was processed to produce VP0, VP3, and VP1. We further demonstrated the formation of capsid protein complexes by co-precipitation of VP0, VP3, and VP1 with monoclonal antibodies against viral capsid proteins. Swine inoculated with Ad5A24+O1 generated neutralizing antibodies against both A24 and O1. However, the overall neutralizing antibody response was considerably lower than that induced by a commercial FMD vaccine or a monovalent Ad5-A24 vaccine.  相似文献   

2.
3.
In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.  相似文献   

4.
口蹄疫病毒 VP1 蛋白在酵母中的表达及免疫原性分析   总被引:4,自引:0,他引:4  
目的 :利用毕赤酵母表达系统表达牛O型口蹄疫外壳蛋白(FMDVVP1) ,并对表达的蛋白进行免疫原性鉴定。方法 :将FMDVvp1基因克隆到毕赤酵母Pichiapastoris分泌性表达载体pSuperY中 ,构建重组表达载体pSuperY/vp1,经测序证明vp1基因序列的正确性。将纯化的重组质粒经线性化酶切后 ,用电转化法将pSuperY/vp1导入毕赤酵母菌种SMD116 8H中。对表达产物用SDS PAGE和Westernblot进行分析 ,并用酵母表达的FMDVVP1蛋白免疫小鼠。结果 :以重组质粒pSuperY/vp1转化毕赤酵母菌后 ,能表达相对分子量 (Mr)为 6 6 0 0 0和4 30 0 0的FMDVVP1蛋白。动物免疫结果表明 ,FMDVVP1蛋白能诱导小鼠产生特异性的体液和细胞免疫应答。结论 :在毕赤酵母中成功地表达FMDVVP1蛋白 ,为研制新型FMDVVP1的基因工程疫苗奠定了基础  相似文献   

5.
Foot-and-mouth disease (FMD), one of the most contagious and economically important diseases of farm animals, is caused by a FMD virus (FMDV) which belongs to the family of Picornaviridae. The virus occurs as seven serotypes of which four (A, O, C and Asia 1) are prevalent in India. Immunoprophylaxis supported by precise diagnosis is the prime requirement for achieving the success in controlling the disease. Recently, recombinant DNA technology is gaining importance for the production of cost-effective and safer diagnostics and immunogens. Based on this approach, cDNA of a part of gene for major variable immunogenic region, VP1, of FMDV of four serotypes (A22, O, C and Asia 1) was amplified by PCR and cloned into expression vector. The expression of the 16 K protein gene from the clones was induced with IPTG and analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) and [35S]-methionine labeling. The immunoreactivity of the labeled proteins was assayed by immunoprecipitation with anti-FMDV type-specific sera. Since the proteins contain 6 His residues at the N-terminal end, their affinity purification was carried out using nickel nitrilo-tri-acetic acid (Ni-NTA) agarose matrix. The proteins were found to be immunoreactive and the useful in the FMD diagnosis.  相似文献   

6.
Foot and mouth disease (FMD) is the major constraint to international trade in livestock and animal products. Though conventional vaccine has shown to provide protection, it has several limitations, like short duration of immunity and poor cell mediated immune response compared to DNA vaccines, which are known to induce both cell mediated as well as humoral responses. The present work envisages the production of DNA vaccine construct with partial 1D gene (coding for VP1) of FMDV type 'A' and studied the efficacy of the vaccine coated on cationic PLGA micro-particles in guinea pigs. Sequence coding for VP1 of serotype 'A' was amplified by PCR and cloned into mammalian expression vector, pCDNA-containing FMDV IRES. Expression of the construct was confirmed by transfection of the plasmid into BHK-21 cells followed by the protein profile by SDS-PAGE and Western blotting of the cell lysate. Guinea pigs were immunized with 25 mug of the vaccine construct intramuscularly, followed by a booster at 21st day. Sera from the animals of all the groups (pre-vaccinated, 14, 21, and 28 days of post-vaccination) was analyzed by ELISA and SNT. ELISA titers indicated significant improvement in the antibody titers in the PLG-coated DNA group (2.408 + 0.06), whereas the naked plasmid gave a titer of 1.505+. Serum neutralization titers were higher in PLG-coated vaccine group compared to the animals that received the naked DNA vaccine. Increased CTL response measured by MTT stimulation index (1.58 + 0.08) was observed in the case of PLG-coated DNA vaccine construct compared to the naked DNA vaccine (1.29 + 0.068). PLG-DNA vaccine construct conferred 100% protection to the animals when challenged with 100GpID50 of homologous virus compared to 50% protection in case of naked DNA vaccine construct. The present study has shown that adjuvantation with PLG markedly improved the efficacy of DNA vaccine against FMDV.  相似文献   

7.
Subunit vaccine prepared from VP1 protein of foot-and-mouth disease virus (FMDV) types 0 and Asia 1 protected guinea pigs against FMD and also induced high levels of antibody. Liposomes have been used as a safe and potent immunological adjuvant for FMD vaccines. Vaccines prepared from inactivated virus types 0 and Asia 1 encapsulated in liposomes protected guinea pigs against challenge with homologous virus and showed good antibody response in pigs on a small scale field trial.  相似文献   

8.
A recombinant replication-defective human adenovirus serotype 5 vector containing FMDV capsid, P1-2A, and viral 3C protease coding regions was constructed. Two viral clones were isolated, Ad5-P12X3CWT, containing the wild-type (WT) 3C protease that processes capsid polyprotein precursor into mature capsid proteins, and Ad5-P12X3CMUT, containing a point mutation in the protease coding region that inhibits processing. In 293 cells infected with either virus, synthesis of the FMDV capsid polyprotein precursor occurred, but processing of the polyprotein into structural proteins VP0, VP3, and VP1 occurred only in 3CWT virus-infected cells. Immunoprecipitation with monospecific and monoclonal antibodies indicates possible higher order structure formation in Ad5-P12X3CWT virus-infected cells. The viruses were used to elicit immune responses in mice inoculated intramuscularly (im). Only virus containing the 3CWT elicited a neutralizing antibody response. After boosting, this neutralizing antibody response increased. Swine inoculated im with Ad5-P12X3CWT virus developed a neutralizing antibody response and were either completely or partially protected from contact challenge with an animal directly inoculated with virulent FMDV. This adenovirus vector may be an efficient system for the delivery of FMDV cDNA into animals, leading to a high level of neutralizing antibody production and protection from FMDV challenge.  相似文献   

9.
Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle.  相似文献   

10.
Fan H  Tong T  Chen H  Guo A 《Virus genes》2007,35(2):347-357
Because foot-and-mouth disease virus (FMDV) remains a great problem to many livestock of agricultural importance, safe, effective vaccines are in great need. DNA vaccine would be a promising candidate but the design remains to be optimized. VP1 gene of FMDV strain O/ES/2001 was linked to three copies of either porcine or murine C3d or four copies of a 28-aa fragment of murine C3d containing the CR2 receptor binding domain (M28). The resultant plasmids encoding C3d/M28-VP1 fusion or only VP1 as control were immunized guinea pigs. Both cellular and humoral immune responses were evaluated and protection was observed after virus challenge. As a result, although the plasmid encoding only VP1 could elicit virus-binding antibody detected by ELISA, splenocyte proliferation, IL-4 and IFN-γ production, the levels were significantly less than C3d/M28-VP1 fusion. Furthermore, VP1 failed to induce neutralization antibody and protect animals against virus challenge, while murine C3d-VP1 fusion efficiently induced neutralization antibody response and provided 87.50% of the animals with complete protection and 12.50% with partial protection. Among murine C3d, M28, and porcine C3d, the adjuvant effect of murine C3d is strongest, followed by porcine C3d, and last murine M28. In conclusion, the fact that C3d genes, when coupled to VP1 gene, are able to greatly enhance the protective immune response of VP1 DNA in guinea pigs suggests that C3d-VP1 DNA chimera has a significant potential for use as a novel DNA vaccine against FMDV.  相似文献   

11.
The importance of the induction of virus neutralizing antibodies to provide protection against foot-and-mouth disease virus (FMDV) infection is well established. However, recent studies with recombinant adenovirus expressing the precursor polypeptide of the viral capsid (P1) indicate that cattle inoculated with this recombinant vector developed partial protection against FMDV infection, in the absence of a detectable specific humoral response. Other viral vectors have been widely used to induce protective immunity against many pathogens, and it has been reported that the use of different vectors for priming and boosting injections can provide a synergistic effect on this response. In this work, we determined the immunogenicity of two recombinant viruses (adenovirus and vaccinia) expressing P1-FMDV, administered either individually or sequentially, and the protection that they induced against FMDV challenge in pigs. A double immunization with the adeno-P1 virus was the most effective strategy at inducing protective immunity. In contrast to previous reports, the use of two different vectors for priming and boosting did not show a synergistic effect on the protection induced against FMD. Interestingly, immunized pigs developed FMDV-specific T cell responses but not detectable antibodies. Thus, the protection observed was likely to be mediated by a cellular immune response.  相似文献   

12.
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating vesicular disease of cloven-hoofed animals. In this study, three amino acid residues 21-60, 141-160 and 200-213 from VP1 protein of FMDV were selected as multiple-epitopes (VPe), and a recombinant adenovirus expressing the multiple-epitopes fused with porcine interferon alpha (rAd-pIFN alpha-VPe) was constructed. Six groups of female BALB/c mice (18 mice per group) were inoculated subcutaneously (s.c.) twice at 2-week intervals with the recombinant adenoviruses and the immune responses were examined. Following this the protective efficacy of rAd-pIFN alpha-VPe was examined in guinea pigs and swine. The results showed that both FMDV-specific humoral and cell-mediated immune responses could be induced by rAd-VPe and increased when rAd-pIFN alpha is included in this regime in mice model. Moreover, the levels of the immune responses in the group inoculated with rAd-pIFN alpha-VPe were significantly higher than the group inoculated with rAd-VPe plus rAd-pIFN alpha. All guinea pigs and swine vaccinated with rAd-pIFN alpha-VPe were completely protected from viral challenge. It demonstrated that recombinant adenovirus rAd-pIFN alpha-VPe might be an attractive candidate vaccine for preventing FMDV infection.  相似文献   

13.
14.
Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals, including large and small ruminants and swine. Current vaccine strategies are all directed toward the induction of neutralizing antibody responses. However, the role of cytotoxic T lymphocytes (CTLs) has not received a great deal of attention, in part because of the technical difficulties associated with establishing a reliable assay of cell killing for this highly cytopathic virus. Here, we have used recombinant human adenovirus vectors as a means of delivering FMDV antigens in a T cell-directed vaccine in pigs. We tested the hypothesis that impaired processing of the FMDV capsid would enhance cytolytic activity, presumably by targeting all proteins for degradation and effectively increasing the class I major histocompatibility complex (MHC)/FMDV peptide concentration for stimulation of a CTL response. We compared such a T cell-targeting vaccine with the parental vaccine, previously shown to effectively induce a neutralizing antibody response. Our results show induction of FMDV-specific CD8(+) CTL killing of MHC-matched target cells in an antigen-specific manner. Further, we confirm these results by MHC tetramer staining. This work presents the first demonstration of FMDV-specific CTL killing and confirmation by MHC tetramer staining in response to vaccination against FMDV.  相似文献   

15.
肠毒素性大肠杆菌CS3菌毛呈现载体的构建   总被引:6,自引:0,他引:6  
目的 构建大肠杆菌CS3菌毛呈现载体,实现外源表位在细菌表面的呈现。方法 通过对CS3亚基蛋白二级结构、抗原表位、亲水性及柔韧性的预测分析,确定外源表位的插入位点,重叠延伸PCR方法进行定点突变,将口蹄疫病毒VPI插入到CS3中以验证表现呈现能力;用重组菌腹腔注射免疫小鼠以探讨其抗原性。结果 在大肠杆菌CS3的136位氨基酸残在后突变插入BamHⅠ酶切点构建成呈现载体,全细胞ELISA、电镜和免疫  相似文献   

16.
On the basis of amino acid (aa) sequence of the tandem repeat 133-158-20-34-133-158 which consisted of aa 133-158 of VP1 and aa 20-34 of VP4 of Foot-and-mouth disease virus (FMDV) type Asia 1 a recombinant prokaryotic expression vector pAS1-P encoding a fusion protein and eukaryotic expression vectors pAS1-E and pAS1-EdeltaCpG-ODN representing DNA vaccines were constructed. Guinea pigs immunized with these vaccines showed both neutralizing antibody and T cell proliferation responses. FMDV challenge tests for the first time showed that the recombinant fusion protein and pAS1-E and pAS1-EdeltaCpG-ODN vaccines protected 86%, 60% and 43% of guinea pigs from FMDV type Asia1 challenge, respectively. The results also indicated that the immune response of animals treated with the vector pAS1-E containing an oligodeoxynucleotide (ODN), which consisted of immunostimulatory cytosine-phosphate-guanosine (CpG) motifs, was augmented by CpG ODN.  相似文献   

17.
Li G  Chen W  Yan W  Zhao K  Liu M  Zhang J  Fei L  Xu Q  Sheng Z  Lu Y  Zheng Z 《Virology》2004,328(2):274-281
Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of beta-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine.  相似文献   

18.
Hepatitis B virus core (HBc) particles, self-assemble into capsid particles and are extremely immunogenic, hold promise as an immune-enhancing vaccine carrier for heterologous antigens. However, formation of virus-like particles (VLP) can be restricted by size and structure of heterlogous antigens. In the study, we investigated formation of VLP by modified HBc fused with specified foot-and-mouth disease virus (FMDV) multiepitopes and evaluated their immune effects. Firstly, three HBc display vectors (pHBc1, pHBc2 and pHBc3) were constructed by deletions of different lengths within the HBc c/e1 region: 75-78 amino acid (aa), 75-80 aa and 75-82 aa respectively. Secondly, we inserted different compositions of FMDV multiepitopes, BT [VP1(141-160)-VP4(21-40)] and BTB [VP1(141-160)-VP4(21-40)-VP1(141-160)], into modified regions. As a result, only plasmid pHBc3-BTB of six recombinant vectors was expressed as soluble protein, which resulted in the formation of complete VLP confirmed by electron microscopy. Recombinant VLP could be taken up by cells and presented in vitro and in vivo. Furthermore, the modified VLP displayed a significantly stronger immunogenicity than other five recombinant proteins and GST-BTB with a higher titer of peptide-specific and virus-specific antibody, elevated IFN-gamma and interleukin-4 production, especially enhanced lymphocyte proliferation. The results encourage further work towards the development of FMDV vaccines using hepatitis B virus core particles fused with FMDV epitopes.  相似文献   

19.
O型口蹄疫病毒VP1表位重组蛋白疫苗的构建、表达和纯化   总被引:8,自引:0,他引:8  
目的 为了克服灭活口蹄疫病毒疫苗可能存在的传播病毒的潜在危险,构建一种能预防O型口蹄疫病毒感染的VPI表位重组蛋白疫苗。方法采用O型口蹄疫病毒(FMDV)表面VP1蛋白上的B细胞表位肽和T细胞表位肽,以PCR扩增和克隆连接等方法构建VP1表位六聚体重组蛋白(vP1epi)基因,并在大肠杆菌中进行诱导表达,镍亲和层析纯化。用ELISA法检测VPlepi免疫豚鼠血清中抗FMDV抗体的水平。结果构建了一种由FMDV表面vP1中B细胞表位肽重复六次的蛋白质多肽,采用pET28原核表达系统,在大肠杆菌BL21(DE3)中获得了高效表达,表达产量约占菌体蛋白的30%左右,经镍亲和层析后获得纯度高于90%的VP1表位重组蛋白。VP1epi免疫的豚鼠血清中含有一定量的抗FMDV抗体。结论VP1epi重组蛋白能诱导机体产生抗O型FMDV的抗体,说明这种重组蛋白可能成为预防O型FMDV感染的基因工程蛋白质疫苗。  相似文献   

20.
目的 构建pcDNA3.1介导的诱导性一氧化氮合成酶(iNOS)的基因表达载体和pcDNA3.1介导的iNOS与柯萨奇病毒B组3型(CVB3)结构蛋白VP1融和基因的表达载体。方法 应用PCR扩增和DNA重组技术构建pcDNA3.1-iNOS和pcDNA3.1-iNOS—VP1表达载体;应用真核细胞转染技术及间接免疫荧光技术进行所构建的真核表达载体的初步表达和鉴定。结果 经PCR扩增技术用特异引物从质粒pKSiNOS分离编码iNOS开放阅读框架的cDNA,TA克隆于pMD19-T载体,根据设计引物时加入的酶切位点将插入片断亚克隆于表达载体pcDNA3.1;经PCR扩增技术用特异引物从质粒pCR2.1-VP1分离编码CVB3VP1结构蛋白的cDNA,TA克隆于pMD19-T载体,根据设计引物时加入的酶切位点将VP1亚克隆于iNOS的表达载体pcDNA3.1-iNOS,从而构建含有iNOS和VP1融合基因的真核表达载体。限制性内切酶分析、PCR鉴定和测序证实重组体peDNA3.1-iNOS和peDNA3.1-iN—OS—VP1插入片断的大小和方向正确且开放阅读框架的读码框不变;重组质粒peDNA3.1-iNOS和peDNA3.1-iNOS.VP1在HeLa细胞中均有表达,但表达效率较低。结论 获得含iNOS基因和iNOS—VP1融合基因的真核表达载体,并将重组质粒进行了初步表达,为体外iNOS抗CVB3作用的研究奠定了物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号