首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The verification of the correctness of planned and executed treatments is imperative for safety in radiotherapy. The purpose of the present work is to describe and evaluate the quality assurance (QA) procedures for patient dosimetry implemented at the boron neutron capture therapy (BNCT) facility at Studsvik, Sweden. The dosimetric complexity of the mixed neutron-photon field during BNCT suggests a careful verification of routine procedures, specifically the treatment planning calculations. In the present study, two methods for QA of patient dosimetry are presented. The first is executed prior to radiotherapy and involves an independent check of the planned absorbed dose to be delivered to a point in the patient for each treatment field. The second QA procedure involves in vivo dosimetry measurements using post-treatment activation analysis. Absorbed dose conversion factors taking the difference in material composition and geometry of the patient and the PMMA phantom used for reference dosimetry were determined using the Monte Carlo method. The agreement of the QA procedure prior to radiotherapy reveals an acceptably small deviation for 60 treatment fields of ±4.2% (1 SD), while the in vivo dosimetry method presented may benefit from improvements, as the deviations observed were quite substantial (±12%, 1 SD), and were unlikely to be due to actual errors in the clinical dosimetry.  相似文献   

2.
PURPOSE: Conformal radiotherapy requires accurate knowledge of the actual dose delivered to a patient. The impact of routine in vivo dosimetry, including its special requirements, clinical findings and resources, has been analysed for three conformal treatment techniques to evaluate its usefulness in daily clinical practice. MATERIALS AND METHODS: Based on pilot studies, routine in vivo dosimetry quality control (QC) protocols were implemented in the clinic. Entrance and exit diode dose measurements have been performed during two treatment sessions for 378 patients having prostate, bladder and parotid gland tumours. Dose calculations were performed with a CT-based three-dimensional treatment planning system. In our QC-protocol we applied action levels of 2.5% for the prostate and bladder tumour group and 4.0% for the parotid gland patients. When the difference between the measured dose at the dose specification point and the prescribed dose exceeded the action level the deviation was investigated and the number of monitor units (MUs) adjusted. Since an accurate dose measurement was necessary, some properties of the on-line high-precision diode measurement system and the long-term change in sensitivity of the diodes were investigated in detail. RESULTS: The sensitivity of all diodes decreased by approximately 7% after receiving an integrated dose of 10 kGy, for 4 and 8 MV beams. For 34 (9%) patients the difference between the measured and calculated dose was larger than the action level. Systematic errors in the use of a new software release of the monitor unit calculation program, limitations of the dose calculation algorithms, errors in the planning procedure and instability in the performance of the accelerator have been detected. CONCLUSIONS: Accurate in vivo dosimetry, using a diode measurement system, is a powerful tool to trace dosimetric errors during conformal radiotherapy in the range of 2.5-10%, provided that the system is carefully calibrated. The implementation of an intensive in vivo dosimetry programme requires additional staff for measurements and evaluation. The patient measurements add only a few minutes to the total treatment time per patient and guarantee an accurate dose delivery, which is a prerequisite for conformal radiotherapy.  相似文献   

3.
Today, conformality in radiotherapy is at the centre of many investments in equipment and staffing. To estimate the current situation within the European Organisation for Research and Treatment of Cancer (EORTC) conformal radiotherapy trial for prostate cancer, a technology questionnaire was designed to assess whether participating centres can comply with the required radiotherapy procedures of EORTC trial 22991, where a high dose is prescribed to the prostate. Questions covered various items of computed tomography, data acquisition, treatment planning, delivery and verification. All centres (n=31) replied to the questionnaire. All generate beam's eye views and dose volume histograms. All, but two, centres use digitally reconstructed radiographs to display images. The vast majority of the centres perform at least weekly treatment verification and half have access to individual in vivo dosimetry. The results of the questionnaire indicate that participating centres have access to the equipment and apply the procedures that are essential for conformal prostate radiotherapy. The technology questionnaire is the first step in the extensive quality assurance programme dedicated to this high-tech radiotherapy trial.  相似文献   

4.
PURPOSE: To investigate the feasibility of replacing pretreatment verification with in vivo electronic portal imaging device (EPID) dosimetry for prostate intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: Dose distributions were reconstructed from EPID images, inside a phantom (pretreatment) or the patient (five fractions in vivo) for 75 IMRT prostate plans. Planned and EPID dose values were compared at the isocenter and in two dimensions using the gamma index (3%/3 mm). The number of measured in vivo fractions required to achieve similar levels of agreement with the plan as pretreatment verification was determined. The time required to perform both methods was compared. RESULTS: Planned and EPID isocenter dose values agreed, on average, within +/-1% (1 SD) of the total plan for both pretreatment and in vivo verification. For two-dimensional field-by-field verification, an alert was raised for 10 pretreatment checks with clear but clinically irrelevant discrepancies. Multiple in vivo fractions were combined by assessing gamma images consisting of median, minimum and low (intermediate) pixel values of one to five fractions. The "low" gamma values of three fractions rendered similar results as pretreatment verification. Additional time for verification was approximately 2.5 h per plan for pretreatment verification, and 15 min +/- 10 min/fraction using in vivo dosimetry. CONCLUSIONS: In vivo EPID dosimetry is a viable alternative to pretreatment verification for prostate IMRT. For our patients, combining information from three fractions in vivo is the best way to distinguish systematic errors from non-clinically relevant discrepancies, save hours of quality assurance time per patient plan, and enable verification of the actual patient treatment.  相似文献   

5.
6.
Procedures and techniques developed for the negative pi-meson (pion) radiotherapy program at the Los Alamos Meson Physics Facility, Los Alamos, NM, are reviewed and described. A particular pion patient is followed through the entire planning and treatment sequence to describe CT scanning procedures, bolus and collimator and treatment techniques developed to minimize positioning errors (less than 5 mm). Comparison of 2-D and 3-D isodose calculations developed at Los Alamos showed differences of less than 10% attributable to multiple scattering effects and the computational models used. Treatment verification methods using in vivo ion chamber dosimetry generally confirmed the prescribed dose delivery within 10% and using TLD within 18%.  相似文献   

7.
Tomotherapy   总被引:7,自引:0,他引:7  
Tomotherapy is delivery of intensity-modulated, rotational radiation therapy using a fan-beam delivery. The NOMOS (Sewickley, PA) Peacock system is an example of sequential (or serial) tomotherapy that uses a fast-moving, actuator-driven multileaf collimator attached to a conventional C-arm gantry to modulate the beam intensity. In helical tomotherapy, the patient is continuously translated through a ring gantry as the fan beam rotates. The beam delivery geometry is similar to that of helical computed tomography (CT) and requires the use of slip rings to transmit power and data. A ring gantry provides a stable and accurate platform to perform tomographic verification using an unmodulated megavoltage beam. Moreover, megavoltage tomograms have adequate tissue contrast and resolution to provide setup verification. Assuming only translational and rotational offset errors, it is also possible to determine the offsets directly from tomographic projections, avoiding the time-consuming image reconstruction operation. The offsets can be used to modify the leaf delivery pattern to match the beam to the patient's anatomy on each day of a course of treatment. If tomographic representations of the patient are generated, this information can also be used to perform dose reconstruction. In this way, the actual dose distribution delivered can be superimposed onto the tomographic representation of the patient obtained at the time of treatment. The results can be compared with the planned isodose on the planning CT. This comparison may be used as an accurate basis for adaptive radiotherapy whereby the optimized delivery is modified before subsequent fractions. The verification afforded tomotherapy allows more precise conformal therapy. It also enables conformal avoidance radiotherapy, the complement to conformal therapy, for cases in which the tumor volume is ill-defined, but the locations of sensitive structures are adequately determined. A clinical tomotherapy unit is under construction at the University of Wisconsin.  相似文献   

8.
PURPOSE: To evaluate the potential of in vivo thermoluminescence dosimetry to estimate the accuracy of dose delivery in conformal high-dose-rate brachytherapy of prostate cancer. METHODS AND MATERIALS: A total of 50 LiF, TLD-100 cylindrical rods were calibrated in the dose range of interest and used as a batch for all fractions. Fourteen dosimeters for every treatment fraction were loaded in a plastic 4F catheter that was fixed in either one of the 6F needles implanted for treatment purposes or in an extra needle implanted after consulting with the patient. The 6F needles were placed either close to the urethra or in the vicinity of the median posterior wall of the prostate. Initial results are presented for 18 treatment fractions in 5 patients and compared to corresponding data calculated using the commercial treatment planning system used for the planning of the treatments based on CT images acquired postimplantation. RESULTS: The maximum observed mean difference between planned and delivered dose within a single treatment fraction was 8.57% +/- 2.61% (root mean square [RMS] errors from 4.03% to 9.73%). Corresponding values obtained after averaging results over all fractions of a patient were 6.88% +/- 4.93% (RMS errors from 4.82% to 7.32%). Experimental results of each fraction corresponding to the same patient point were found to agree within experimental uncertainties. CONCLUSIONS: Experimental results indicate that the proposed method is feasible for dose verification purposes and suggest that dose delivery in transperineal high-dose-rate brachytherapy after CT-based planning can be of acceptable accuracy.  相似文献   

9.
全身照射治疗中的半导体剂量监测   总被引:2,自引:0,他引:2  
对患者进行照射现场中的剂量监测是放射治疗质量保证和质量控制的最有效的措施之一,文章结合工作实践,探讨如何有效地进行X射线全身照射过程中的半导体剂量监测.  相似文献   

10.
PURPOSE: In external beam radiotherapy (EBRT) and especially in intensity-modulated radiotherapy (IMRT), the accuracy of the dose distribution in the patient is of utmost importance. It was investigated whether image guided in vivo dosimetry in the rectum is a reliable method for online dose verification. METHODS AND MATERIALS: Twenty-one dose measurements were performed with an ionization chamber in the rectum of 7 patients undergoing IMRT for prostate cancer. The position of the probe was determined with cone beam computed tomography (CBCT). The point of measurement was determined relative to the isocenter and relative to an anatomic reference point. The dose deviations relative to the corresponding doses in the treatment plan were calculated. With an offline CT soft-tissue match, patient positioning after ultrasound was verified. RESULTS: The mean magnitude +/- standard deviation (SD) of patient positioning errors was 3.0 +/- 2.5 mm, 5.1 +/- 4.9 mm, and 4.3 +/- 2.4 mm in the left-right, anteroposterior and craniocaudal direction. The dose deviations in points at corresponding positions relative to the isocenter were -1.4 +/- 4.9% (mean +/- SD). The mean dose deviation at corresponding anatomic positions was 6.5 +/- 21.6%. In the rare event of insufficient patient positioning, dose deviations could be >30% because of the close proximity of the probe and the posterior dose gradient. CONCLUSIONS: Image-guided dosimetry in the rectum during IMRT of the prostate is a feasible and reliable direct method for dose verification when probe position is effectively controlled.  相似文献   

11.
PURPOSE: To develop a quality assurance (QA) procedure to assess the intensity profile and dosimetry for intensity-modulated (IM) treatment fields using electronic portal imaging devices (EPIDs). METHODS AND MATERIALS: A series of rapidly acquired (approximately 1/sec) portal images are summed and converted to dose. For relative intensity QA, the intended profile is subtracted point-by-point from the measured profile forming a series of error values. The standard deviation, sigma, of the errors, a measure of the goodness of the match, is minimized by applying a normalization and uniform scatter subtraction from the measured profile. For dose verification (dose to isocenter), an empirically determined phantom-correction factor is added to incorporate the effect of patient presence on EPID readings. Seventy prostate treatment fields were used in a phantom study to verify these approaches. Sensitivity was studied by creating artificial mismatches. RESULTS: The average sigma for relative profile verification is 3.3% (percentage of average intended intensity) whereas artificial mismatches resulted in sigma values from 5% to 27%. The average isocentric dose calculated from EPID readings is 1.001 relative to the planned dose with a standard deviation of 0.018. CONCLUSIONS: An EPID can be used for profile verification and absolute isocentric dose measurement for IM fields.  相似文献   

12.
BACKGROUND AND PURPOSE: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. MATERIALS AND METHODS: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. RESULTS: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. CONCLUSION: This quality audit proved to be a useful tool for the improvement of quality in radiotherapy. It succeeded to disseminate the IAEA TRS-398 protocol in nearly all radiotherapy centers achieving homogenization and consistency of dosimetry within the country. Also, it detected discrepancies in dosimetry and provided guidance and recommendations to eliminate sources of errors. Finally, it proved that quality assurance programs, periodic quality control tests, maintenance and service play an important role for achieving accuracy and safe operation in radiotherapy.  相似文献   

13.
The 3-dimensional (3-D) dose distribution as calculated in clinical practice for tangential breast treatment was verified by means of in vivo dosimetry. Clinical practice in our institution implies the use of 8 MV X-ray beams, a 2-D treatment planning system, collimator rotation and a limited set of patient data for dose calculations. By positioning diodes at the central beam axes as well as in the periphery of the breast the magnitude of the dose values at the isocentre and in points situated in the high-dose regions behind the lung could be assessed. The position of the diodes was verified by means of an on-line portal imaging device. The reproducibility of these in vivo dose measurements was better than 2% (1 SD). Our study showed that on the average the dose delivery at the isocentre is 2% less and at the points behind the lung, 5.7% higher with respect to the calculated dose values. Detailed analysis of these in vivo dosimetry results, based on dose measurements performed with a breast shaped phantom, yielded the magnitudes of the errors in the predicted dose due to several limitations in the dose calculation algorithms and dose calculation procedure. These limitations are each introducing an error of several percent but are compensating each other for the dose calculation at the isocentre. We concluded that the dose distribution in a patient for our treatment technique and dose calculation procedure can be predicted with a 2-D treatment planning system in an acceptable way. A more accurate prediction of the dose distribution can be performed but requires an estimation of the lack of scatter due to missing tissue, the change in the dose distribution due to oblique incident beams and the incorporation of the actual output of the treatment machine in the assessment of the number of monitor units.  相似文献   

14.
BACKGROUND AND PURPOSE: To analyse the results of routine EPID measurements for individualised patient dosimetry. MATERIALS AND METHODS: Calibrated camera-based EPIDs were used to measure the central field dose, which was compared with a dose prediction at the EPID level. For transit dosimetry, dose data were calculated using patient transmission and scatter, and compared with measured values. Furthermore, measured transit dose data were back-projected to an in vivo dose value at 5 cm depth in water (D(5)) and directly compared with D(5) from the treatment planning system. Dose differences per treatment session were calculated by weighting dose values with the number of monitor units per beam. Reported errors were categorised and analysed for approximately 37,500 images from 2511 patients during a period of 24 months. RESULTS: Pre-treatment measurements showed a mean dose difference per treatment session of 0.0+/-1.7% (1 SD). Transfer errors were detected and corrected prior to the first treatment session. An accelerator output variation of about 4% was found between two weekly QC measurements. Patient dosimetry showed mean transit and D(5) dose differences of -0.7+/-5.2% (1 SD) and -0.3+/-5.6% (1 SD) per treatment session, respectively. Dose differences could be related to set-up errors, organ motion, erroneous density corrections and changes in patient anatomy. CONCLUSIONS: EPIDs can be used routinely to accurately verify treatment parameter transfer and machine output. By applying transit and in vivo dosimetry, more insight can be obtained with respect to the different error sources influencing dose delivery to a patient.  相似文献   

15.
Evaluation of a 2D diode array for IMRT quality assurance.   总被引:8,自引:0,他引:8  
BACKGROUND AND PURPOSE: The QA of intensity modulated radiotherapy (IMRT) dosimetry is a laborious task. The goal of this work is to evaluate the dosimetric characteristics of a new 2D diode array (MapCheck from Sun Nuclear Corporation, Melbourne, Florida) and assess the role it can play in routine IMRT QA. MATERIAL AND METHODS: Fundamental properties of the MapCheck such as reproducibility, linearity and temperature dependence are studied for high-energy photon beams. The accuracy of the correction for difference of diode sensitivity is also assessed. The diode array is benchmarked against film and ion chambers for conventional and IMRT treatments. The MapCheck sensitivity to multileaf collimator position errors is determined. RESULTS: The diode array response is linear with dose up to 295 cGy. All diodes are calibrated to within +/-1% of each other, and mostly within +/-0.5%. The MapCheck readings are reproducible to within a maximum SD of +/-0.15%. A temperature dependence of 0.57%/ degrees C was noted and should be taken into account for absolute dosimetric measurement. Clinical performance of the MapCheck for relative and absolute dosimetry is demonstrated with seven beam (6 MV) head and neck IMRT plans, and compares well with film and ion chamber measurements. Comparison to calculated dose maps demonstrates that the planning system model underestimates the dose gradients in the penumbra region. CONCLUSIONS: The MapCheck offers the dosimetric characteristics required for performing both relative and absolute dose measurements. Its use in the clinic can simplify and reduce the IMRT QA workload.  相似文献   

16.
The quality insurance in radiotherapy in the frame of highly complex technical process as Intensity modulated radiotherapy (IMRT) needs independent control of the delivered dose to the patient. Actually, up to now, most of the radiotherapy treatments rely only on computed dosimetry through a rather complicated series of linked simulation tool. This dosimetry approach requires also qualified treatment means based on cautious quality insurance procedures. However, erroneous parameters could be difficult to detect and systematical errors could happen leading to radiotherapy accidents. In this context, in vivo dosimetry has a critical role of final control of the delivered dose. As many beam incidences and ports are used for any photontherapy treatment, external control could be very tedious and time consuming. Therefore, innovations are needed for in vivo dosimetry to provide ergonomic and efficient tools for these controls. This paper presents a review of technologies and products that can be used for in vivo dosimetry. It proposes also a reflection on the concepts to develop future devices suitable for this purpose. The technical means with their physical principles are reviewed, the clinical experiences demonstrating the feasibility of new techniques are then summarized and finally, the early clinical use and its impact on clinical practice is review.  相似文献   

17.
18.
PurposeHelical Tomotherapy (HT) appears as a valuable technique for total body irradiation (TBI) to create highly homogeneous and conformal dose distributions with more precise repositioning than conventional TBI techniques. The aim of this work is to describe the technique implementation, including treatment preparation, planning and dosimetric monitoring of TBI delivered in our institution from October 2016 to March 2019.Material and methodPrior to patient care, irradiation protocol was set up using physical phantoms. Gafchromic films were used to assess dose distribution homogeneity and evaluate imprecise patient positioning impact. Sixteen patients’ irradiations with a prescribed dose of 12 Gy were delivered in 6 fractions of 2 Gy over 3 days. Pre-treatment quality assurance (QA) was performed for the verification of dose distributions at selected positions. In addition, in-vivo dosimetry was carried out using optically stimulated luminescence dosimeters (OSLD).ResultsPlanning evaluation, as well as results of pre-treatment verifications, are presented. In-vivo dosimetry showed the strong consistency of OSLD measured doses. OSLD mean relative dose differences between measurement and calculation were respectively +0,96% and ?2% for armpit and hands locations, suggesting better reliability for armpit OSLD positioning. Repercussion of both longitudinal and transversal positioning inaccuracies on phantoms is depicted up to 2 cm shifts.ConclusionThe full methodology to set up TBI protocol, as well as dosimetric evaluation and pre-treatment QA, were presented. Our investigations reveal strong correspondence between planned and delivered doses shedding light on the dose reliability of OSLD for HT based TBI in-vivo dosimetry.  相似文献   

19.
As radiotherapy becomes more complicated, dose and geometry verification become more necessary. The aim of this study was to use back-projected EPID-based 3D in vivo dosimetry and cone-beam CT (CBCT) to obtain a complete account of the entire treatment for a select patient group. Nine hypo-fractionated rectum IMRT patient plans were investigated. The absolute dose was reconstructed at multiple planes using patient contours and EPID images acquired for all fields during treatment. The meso-rectal fat (m-R) was re-delineated on daily CBCT scans, acquired prior to each fraction. The total accumulated dose was determined by mapping the m-R surface of each fraction to the planned m-R surface. Average planned and measured isocentre dose ratios were 0.98 (+/-0.01SD). 3D gamma analysis (3% maximum dose and 3mm) revealed mean gamma, gamma(mean)=0.35 (+/-0.03 SD), maximum 1% of gamma points, gamma(max1%)=1.02 (+/-0.14SD) and the percentage of points with gamma < or = 1, P(gamma < or = 1)=99% (range [96%, 100%]), averaged over all patients. CBCT m-R volumes varied by up to 20% of planned volumes, but remained in the high dose region. Over-dosage of up to 4.5% in one fraction was measured in the presence of gas pockets. By combining EPID dosimetry with CBCT geometry information, the total dose can be verified in 3D in vivo and compared with the planned dose distribution. This method can provide a safety net for advanced treatments involving dose escalation, as well as a full account of the delivered dose to specific volumes, allowing adaptation of the treatment from the original plan if necessary.  相似文献   

20.
BACKGROUND: In vivo dosimetry is widely considered to be an important tool for quality assurance in external radiotherapy. Introduction: In this study we report on our experience over more than 4 years in systematic in vivo dosimetry with diodes. MATERIALS AND METHODS: From November '94 an in vivo entrance dosimetry check was performed for every new patient irradiated at one of our treatment units (Linac 6/100, 6 MV X-rays). Diodes were calibrated in terms of entrance dose; appropriate correction factors had been previously assessed (taking SSDs, field width, wedge, oblique incidence and blocking tray into account) and were individually applied to in vivo diode readings. The in vivo measured entrance dose was compared with the expected one, with a 5% action level; if a larger deviation was found, all treatment parameters were verified, and the in vivo dosimetry check was repeated. During the period November '94-May '99, 2824 measurements on 1433 patients were collected. RESULTS: Nine out of 1433 (0.63%) serious systematic errors (leading to a 5% or more on the delivered dose to the PTV) were detected by in vivo dosimetry; four out of nine would produce a 10% or more error if not detected. The rate of serious systematic errors detected by an independent check of treatment chart and MU calculation was found to be 1.5%, showing that less than 1/3 of the errors escapes this check. One hundred and twelve out of 1433 (7.8%) patients had more than one check: the rate of second checks was significantly higher for breast patients (31/250, 12.4%) against non-breast patients (81/1183, 6.8%, P=0.003). A number of patients demonstrated a persistent relatively large error even after two or more checks. For almost all patients the cause of the deviation was assessed; the most frequent cause was the difficulty in correctly positioning the patient and/or the diode. When analyzing the distribution of the deviations between measured and expected entrance doses (excluding first checks in the case of repetition of the in vivo dosimetry control) the mean deviation was 0.4% with a standard deviation equal to 3.0%. The rates of deviations larger than 5 and 7% were 9.9 and 2.6%, respectively. When considering the same data taking the average deviation in the case of opposed beams, the SD became 2.6% and the rates of deviations larger than 5 and 7%, respectively, 5.2 and 0.8%. When dividing the beams according to their orientation, significantly higher rates of large deviations (>5 and 7%) were found for oblique and posterior-anterior (PA) fields against lateral and anterior-posterior (AP) fields (P<0.05). Similarly, higher rates of large deviations were found for wedged fields against unwedged fields (P<0.03) and for blocked fields against unblocked fields (P<0.01). When dividing the data according to the anatomical district, accuracy was worse for breast (mean deviation 0.1%, 1 SD: 3.5%) and neck AP-PA fields (mean deviation 1%, 1 SD: 3,4%). Better accuracy was found for vertebrae (0.1%, 1 SD 2. 1%) and brain patients (-0.7%, 1 SD: 2.6%). During the considered period, in vivo dosimetry was also able to promptly detect a systematic error caused by a wrong resetting of the simulator height couch indicator, with a consequent error in the estimate of patient thickness of about 4 cm. CONCLUSIONS: In our experience, systematic in vivo dosimetry demonstrated to be a valid tool for quality assurance, both in detecting systematic errors which may escape the data transfer/MU calculation check and in giving an effective way of estimating the accuracy of treatment delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号