首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Although inhaled bronchodilators are commonly used in the treatment of airway disease to dilate airway smooth muscle, little is known regarding the mechanisms that regulate albuterol movement across the epithelium to reach its target, the airway smooth muscle. Because the rate of onset depends on the transepithelial transport of albuterol, to determine the mechanisms that regulate the transepithelial movement of albuterol is essential. Human bronchial epithelial cells, fully redifferentiated in culture at the air-liquid interface, were used to study the cellular uptake and total transepithelial flux of (3)H-albuterol from the apical to the basolateral surfaces. (3)H-mannitol and transepithelial electrical resistance were used to quantify changes in paracellular permeability. The majority of albuterol flux across the epithelium occurred via the paracellular route. The cellular uptake of albuterol was found to be saturable, whereas transepithelial flux was not. Cellular uptake could be inhibited by the amino acids lysine and histidine, with no effect on net transepithelial flux. Transepithelial flux was altered by maneuvers that collapsed or disrupted intercellular junctions. Acidification, usually seen in exacerbations of airway disease, decreased albuterol flux. In addition, albuterol increased its own paracellular permeability. The ability of albuterol to modulate paracellular permeability was blocked by the β(2)-adrenergic receptor-selective antagonist ICI 118551. Albuterol mainly crosses the epithelium via the paracellular pathway, but has the ability to modulate its own permeability through changes in the leakiness of tight junctions, which is modulated through the signaling of the β(2)-adrenergic receptor.  相似文献   

2.
The beta(2)-adrenergic agonist, albuterol, is used as a bronchodilator by patients with asthma and consists of a racemic mixture of (R)- and (S)-albuterol. However, the action of the individual enantiomers is poorly understood. Consequently, we investigated the effects of (R)-, (S)- and racemic-albuterol on airway smooth muscle cell (SMC) contraction and Ca(2+) signaling in mouse lung slices with phase-contrast and confocal microscopy. (R)-albuterol relaxed airways contracted with methacholine (MCh) in a dose-dependent manner. By contrast, (S)-albuterol had no effect on airways. (R)-albuterol had a greater relaxant effect than a double concentration of racemic albuterol. Because MCh-induced contraction of airway SMCs is mediated by Ca(2+) oscillations and an increase in Ca(2+) sensitivity, the effects of albuterol on these responses were examined. Both (R)- and racemic albuterol decreased the frequency of the MCh-induced Ca(2+) oscillations by a similar amount. However, (R)-albuterol was more effective than racemic albuterol in decreasing the Ca(2+) sensitivity of the airway SMCs in "model" lung slices with a clamped [Ca(2+)](i). In contrast, (S)-albuterol had no effect on the Ca(2+) oscillations or the Ca(2+) sensitivity. In conclusion, (R)-albuterol consistently induced a greater airway relaxation than racemic albuterol, and (S)-albuterol appears to be responsible for this reduced efficacy.  相似文献   

3.
4.
BACKGROUND: Eosinophil-epithelial cell interactions make a major contribution to asthmatic airway inflammation. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other members of the neurotrophin family, originally defined as a class of neuronal growth factors, are now recognized to support the survival and activation of immune cells. Neurotrophin levels are increased in bronchoalveolar lavage fluid during allergic asthma. OBJECTIVE: We sought to investigate the role of neurotrophins as inflammatory mediators in eosinophil-epithelial cell interactions during the allergic immune response. METHODS: Neurotrophin expression in the lung was investigated by means of immunohistochemistry and ELISA in a mouse model of chronic experimental asthma. Coculture experiments were performed with airway epithelial cells and bronchoalveolar lavage fluid eosinophils. RESULTS: Neurotrophin levels increased continuously during chronic allergic airway inflammation, and airway epithelial cells were the major source of NGF and BDNF within the inflamed lung. Epithelial neurotrophin production was upregulated by IL-1beta, TNF-alpha, and T(H)2 cytokines. Lung eosinophils expressed the BDNF and NGF receptors tropomyosin-related kinase (Trk) A and TrkB, and coculture with airway epithelial cells resulted in enhanced epithelial neurotrophin production, as well as in prolonged survival of eosinophils. Eosinophil survival was completely abolished in the presence of the neurotrophin receptor Trk antagonist K252a. CONCLUSION: During allergic inflammation, airway epithelial cells express increased amounts of NGF and BDNF that promote the survival of tissue eosinophils. Controlling epithelial neurotrophin production might be an important therapeutic target to prevent allergic airway eosinophilia. CLINICAL IMPLICATIONS: Attenuating the release of inflammatory mediators from the activated airway epithelium will become an important strategy to disrupt the pathogenesis of chronic allergic asthma.  相似文献   

5.
BACKGROUND: (R)- and (S)-Enantiomers of albuterol likely exert differential effects in patients with asthma. The (R)-enantiomer binds to the beta2-adrenergic receptor with greater affinity than the (S)-enantiomer and is responsible for albuterol's bronchodilating activity. (S)-Albuterol augments bronchospasm and has proinflammatory actions. OBJECTIVE: The study aim was to determine whether the (S)-enantiomer, in contrast to the (R)-enantiomer, has adverse effects on allergic airway inflammation and hyperresponsiveness in a mouse asthma model. METHODS: Mice sensitized to ovalbumin (OVA) intraperitoneally on days 0 and 14 were challenged with OVA intranasally on days 14, 25, and 35. On day 36, 24 hours after the final allergen challenge, the effect of the (R)- and (S)-enantiomers of albuterol (1 mg x kg(-1) x d(-1) administered by means of a miniosmotic pump from days 13-36) on airway inflammation and hyperreactivity was determined. RESULTS: In OVA-sensitized/OVA-challenged mice, (R)-albuterol significantly reduced the influx of eosinophils into the bronchoalveolar lavage fluid and airway tissue. (R)-Albuterol also significantly decreased airway goblet cell hyperplasia and mucus occlusion and levels of IL-4 in bronchoalveolar lavage fluid and OVA-specific IgE in plasma. Although (S)-albuterol significantly reduced airway eosinophil infiltration, goblet cell hyperplasia, and mucus occlusion, it increased airway edema and responsiveness to methacholine in OVA-sensitized/OVA-challenged mice. Allergen-induced airway edema and pulmonary mechanics were unaffected by (R)-albuterol. CONCLUSION: Both (R)- and (S)-enantiomers of albuterol reduce airway eosinophil trafficking and mucus hypersecretion in a mouse model of asthma. However, (S)-albuterol increases allergen-induced airway edema and hyperresponsiveness. These adverse effects of the (S)-enantiomer on lung function might limit the clinical efficacy of racemic albuterol.  相似文献   

6.
We have tested the hypothesis that the bronchial epithelium has the capacity to generate and release cytokines that could contribute to inflammatory events associated with inflammatory lung diseases. Messenger RNA (mRNA) for interleukin-6 (IL-6), IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) was identified in human bronchial epithelial cell primary cultures, characterized on the basis of staining for cytokeratin, using both in situ hybridization and Northern blotting. Using in situ hybridization we have shown that the majority of the cells expressed mRNA for IL-6 and IL-8, whereas fewer than 20% of cells expressed message for GM-CSF. The numbers of cells expressing message were increased by culture with tumour necrosis factor-alpha (TNF-alpha) (20 ng/ml, 24 hr). These observations were substantiated by Northern blotting, which showed that both TNF-alpha and IL-1 beta were able to induce a dose-dependent increase in IL-8-specific mRNA. Immunoreactive IL-6 and GM-CSF were detected and quantified in the culture supernatants by ELISA, and IL-8 by radioimmunoassay. The levels of immunoreactivity were increased by incubation of epithelial cells with either IL-1 beta or TNF-alpha for 24 hr. A transformed tracheal epithelial cell line (9HTEo-) expressed mRNA for IL-6, IL-8 and GM-CSF but, whereas levels of immunoreactive IL-6 in culture supernatants were comparable with those in primary cell cultures, levels of IL-8 were low and GM-CSF trivial. These observations indicate that the bronchial epithelium has the potential to be a major source of IL-8 and a number of other cytokines, and that production can be amplified substantially by IL-1 beta and TNF-alpha. The bronchial epithelium is ideally situated to modulate inflammatory and immunological events in and around the airways, and these observations suggest that it could contribute to promote and sustain inflammatory and immunological processes in inflammatory lung diseases such asthma.  相似文献   

7.
Endotoxin (LPS), a Gram-negative cell wall component, has potent proinflammatory properties. Acute LPS exposure causes airway inflammation; chronic exposure causes airway hyperreactivity and remodeling. IL-10 is an important antiinflammatory cytokine, which is decreased in patients with airway disease, such as asthma and cystic fibrosis. To examine the physiologic and therapeutic role of IL-10 in acute and chronic LPS-induced airway disease. Mice were exposed to aerosolized LPS once or daily for 4 wk. Endpoints were airway inflammation, airway reactivity to methacholine, extracellular matrix protein expression, and histologic analysis. IL-10-deficient mice developed significantly enhanced airway cellularity and remodeling when compared with C57BL/6 mice after chronic LPS inhalation. However they demonstrated less airway hyperreactivity associated with higher inducible nitric oxide synthase (iNOS), endothelial NOS (eNOS), and lung lavage fluid nitrite levels. In a bone marrow transplantation model, the IL-10 antiinflammatory effect was dependent on the hematopoietic but not on the parenchymal IL-10 expression. Induced epithelial human IL-10 expression protected from the LPS effects and led to decreased collagen production. IL-10 attenuates chronic LPS-induced airway inflammation and remodeling. Physiologically, the antiinflammatory effect of IL-10 is mediated by hematopoietic cells. Therapeutically, adenovirus-driven expression of human IL-10 in airway epithelia is sufficient for its protective effect on inflammation and remodeling. The role of IL-10 on airway hyperreactivity is complex: IL-10 deficiency protects against LPS-induced hyperreactivity, and is associated with higher eNOS, iNOS, and airway nitrate levels.  相似文献   

8.
Pseudomonas fluorescens is an opportunistic indoor pathogen that can cause severe airway proinflammatory responses. Pulmonary epithelium, like other mucosal epithelial linings of the body, constitutes the first line of defense against airway microbial pathogens. Mucosal epithelial cells can be a sentinel of pathogenic bacteria via stimulation of specific cell surface receptors, including the epidermal growth factor receptor (EGFR) and Toll-like receptor (TLR). This study addressed the involvement of EGFR in airway epithelial pathogenesis by P. fluorescens. Human A549 pneumocytes showed prolonged production of proinflammatory interleukin-8 (IL-8) in response to infection with P. fluorescens, which was via the nuclear factor-kappa B (NF-κB) signaling pathway. Production of proinflammatory cytokine IL-8 was not mediated by P. fluorescens lipopolysaccharide, a representative TLR4 agonist, but was mediated through EGFR-linked signals activated by the opportunistic bacteria. Moreover, EGFR signals were involved in NF-κB signal-mediated production of proinflammatory cytokines. Along with persistent NF-κB activation, P. fluorescens enhanced the EGFR phosphorylation and subsequent activation of downstream mediators, including protein kinase B or extracellular-signal-regulated kinases 1/2. Blocking of EGFR-linked signals increased epithelial susceptibility to pathogen-induced epithelial cell death, suggesting protective roles of EGFR signals. Thus, airway epithelial exposure to P. fluorescens can trigger antiapoptotic responses via EGFR and proinflammatory responses via TLR4-independent NF-κB signaling pathway in human pneumocytes.  相似文献   

9.
Rhinovirus and asthma   总被引:10,自引:0,他引:10  
Rhinoviruses (RVs) cause the majority of common colds, which often provoke wheezing in patients with asthma. The precise mechanisms responsible for the RV infection-induced exacerbations of bronchial asthma are still uncertain. However, several reports reveal airway hyperresponsiveness, increases in chemical mediators in airway secretions such as kinin and histamine, and airway inflammation in patients with bronchial asthma after RV infection. RV infection induces an accumulation of inflammatory cells in airway mucosa and submucosa including neutrophils, lymphocytes and eosinophils. RV affects the barrier function of airway epithelial cells, and activates the airway epithelial cells and other cells in the lung to produce pro-inflammatory cytokines, including various kinds of interleukins, GM-CSF and RANTES, and histamine. RV also stimulates the expression of intercellular adhesion molecule-1 (ICAM-1) and low-density lipoprotein receptors in the airway epithelium, receptors for major and minor RVs. On the other hand, RV infection is inhibited by treatment with soluble ICAM-1, and by reduction of ICAM-1 expression in the airway epithelial cells after treatment with erythromycin. Both soluble ICAM-1 and erythromycin were reported to reduce the frequency of common colds. Here, we review the pathogenesis and management of RV infection-induced exacerbation of bronchial asthma.  相似文献   

10.
Elevated levels of exhaled nitric oxide are seen in inflammatory airway diseases such as asthma, but the cellular source remains unknown. This study investigated whether human airway epithelial cells express inducible nitric oxide synthase (iNOS). Human bronchial epithelial cells stimulated with 50 ng/ml interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma express iNOS mRNA, protein and increased nitrite in the cell culture media, which was inhibited by the selective iNOS inhibitor 1400W. Cells derived from subjects with asthma produced less nitrite than cells from normal subjects (6.59 +/- 0.99 microM nitrite, n = 15 versus 3.89 +/- 0.42 microM nitrite, n = 20; P < 0.05). This was not attributed to steroid treatment of subjects with asthma because there was no difference in the amount of nitrite released from steroid-naive and steroid-treated cells (3.51 +/- 0.46 versus 4.27 +/- 0.7 microM nitrite, n = 10). Neither dexamethasone nor budesonide inhibited iNOS mRNA induction, protein expression, or nitrite accumulation. The cells were not steroid insensitive because steroids inhibited GM-CSF release. Therefore, although these cells express iNOS under inflammatory conditions, they do not appear to be regulated directly by glucocorticosteroids.  相似文献   

11.
12.
13.
Cystic fibrosis (CF) is characterized by airway inflammation and chronic bacterial lung infection, most commonly with Pseudomonas aeruginosa, an opportunistic human pathogen. Despite the persistent airway inflammation observed in patients with CF, although phagocyte inducible nitric oxide synthase (iNOS) production is upregulated, expression of iNOS in the respiratory epithelium is markedly reduced. Given the antimicrobial action of NO, this may contribute to the chronic airway infection of this disease. To define the role of epithelium-derived NO in airway defense against P. aeruginosa, we infected differentiated human bronchial epithelial cells derived from a patient with CF (CFBE41o- cells) with different strains of this pathogen at low multiplicities of infection. Using cells transfected with human iNOS cDNA, we studied the effect of NO on P. aeruginosa replication, adherence, and internalization. P. aeruginosa adherence to iNOS-expressing cells was reduced by 44 to 72% (P = 0.02) compared with control values. Absolute P. aeruginosa uptake into these cells was reduced by 44%, but uptake expressed as a percentage of adherent bacteria did not differ from the control uptake. Survival of P. aeruginosa within iNOS-expressing cells was reduced at late times postinfection (P = 0.034). NO production did not alter host cell viability. NO production reduced P. aeruginosa adherence to human bronchial epithelial cells and enhanced killing of internalized bacteria, suggesting that a lack of epithelial iNOS in patients with CF may contribute to P. aeruginosa infection and colonization.  相似文献   

14.
The main cause of mortality following lung transplantation is chronic rejection, manifesting morphologically as obliterative bronchiolitis (OB). It has been suggested that damage to the respiratory epithelium initiates proliferation of mesenchymal cells, leading to dense collagenous scarring in small airways. Inducible nitric oxide synthase (iNOS) is strongly expressed in the damaged epithelium in human OB, along with high levels of peroxynitrite, suggesting that endogenous NO mediates the epithelial destruction. To examine further the role of iNOS in this process, heterotopic airway implants were studied in rats, an acknowledged disease model. Specimens of iso- or allografted trachea, collected 3-60 days after implantation, were processed for histology and immunocytochemistry for iNOS and, as a marker of peroxynitrite formation, nitrotyrosine. In both iso- and allografts at the earliest stage (day 3), ischaemia was associated with severe epithelial damage or loss. These changes progressed until day 7 and were accompanied by strong expression of iNOS and nitrotyrosine in epithelial cells. In isografts, epithelial recovery was seen, with abundant iNOS immunoreactivity but little nitrotyrosine. In contrast, the epithelium in allografts did not regenerate and progressive inflammation and fibroproliferation occurred until complete obliteration of the tracheal lumen at day 60. The fibroproliferation was associated with changes in morphology of fibroblasts that were accompanied by alterations in their iNOS expression. iNOS immunoreactivity was dense in the plump fibroblasts of early lesions, in some cases as early as post-operative day 5, but very weak in elongated fibroblasts in totally occluded grafts. The intensity of immunoreactivity for nitrotyrosine corresponded to that of iNOS. These results indicate a dual role for NO in the airway obliteration that follows transplantation, through destruction of epithelium and stimulation of fibroblast activity.  相似文献   

15.
Viruses are associated with the majority of exacerbations of asthma and chronic obstructive pulmonary disease. Virus induction of neutrophil and lymphocyte chemokines in bronchial epithelium is important in exacerbation pathogenesis. Combined corticosteroid/beta2 agonists synergistically suppress airway smooth muscle chemokine production. Because bronchial epithelium expresses glucocorticoid and beta2 receptors, we investigated whether combination therapy can synergistically suppress rhinovirus-induced bronchial epithelial cell neutrophil (CXCL5, CXCL8) and lymphocyte (CCL5, CXCL10) chemokine production. We investigated modulation of rhinovirus- and IL-1beta-induced bronchial epithelial cell chemokine production by salmeterol and fluticasone propionate, used at therapeutic concentrations, alone and in combination. After 1 h pretreatment, combined treatment significantly inhibited rhinovirus 16, 1B, and IL-1beta-induced CCL5 and CXCL8 protein and mRNA production in BEAS-2B cells compared with fluticasone alone. When used 4 h after treatment, the combination significantly reduced virus-induced CCL5 but not CXCL8. Salmeterol alone had no effect; therefore, this inhibition was synergistic. Kinetic analysis demonstrated that combination therapy reduced by 5-fold the concentration of corticosteroid required to inhibit CXCL8 mRNA expression. In primary cells, salmeterol alone reduced rhinovirus-induced CCL5 and CXCL10 and increased CXCL5 production in a dose-dependent manner but had no effect on CXCL8. Fluticasone alone reduced CCL5, CXCL8, and CXCL10 but had no effect on CXCL5. Combination therapy augmented inhibition of CXCL8, CCL5, and CXCL10 but had no effect on CXCL5. Corticosteroids and beta2 agonists suppress rhinovirus-induced chemokines in bronchial epithelial cells through synergistic and additive mechanisms. This effect was greater for lymphocyte- than for neutrophil-related chemokines.  相似文献   

16.
BACKGROUND: Up to 30% of asthmatic subjects are smokers, and smoking might be an important contributor to asthma pathology. Inducible nitric oxide synthase (iNOS), ornithine decarboxylase (ODC), and arginase I are involved in the arginine pathway. We have shown that arginase I and iNOS are upregulated in asthma. Smoking asthmatic subjects are reported to have low exhaled nitric oxide levels. The effect of cigarette smoking on the expression of arginase I in asthma is unknown. OBJECTIVES: The aims of this study were to investigate the expression of arginase I, ODC, and iNOS in asthmatic airways of smokers and nonsmokers and in vitro after nicotine stimulation. METHODS: Endobronchial biopsies were performed on 24 steroid-naive subjects with mild asthma: 12 smokers and 12 nonsmokers. Arginase I, ODC, and iNOS levels were assessed by means of immunohistochemistry and in situ hybridization (arginase I). In vitro stimulation of airway cells with nicotine was performed, followed by real-time PCR. RESULTS: Arginase I, ODC, and iNOS were expressed in the epithelium and smooth muscle bundles of both subgroups of asthmatic subjects. There was an increase of arginase I and ODC immunoreactivities in smoking compared with nonsmoking asthmatic subjects. There was no significant difference in immunoreactivity for iNOS between groups. Nicotine induced a 2-fold increase in arginase I and ODC expression in airway epithelial cells and fibroblasts. CONCLUSION: This study demonstrates that the expression of arginase I and ODC is increased in airways of smoking compared with nonsmoking asthmatic subjects and in vitro by nicotine. CLINICAL IMPLICATIONS: Increased expression of arginase I might lead to low exhaled nitric oxide and chronic obstructive pulmonary disease-like airway remodeling in smoking asthmatic subjects.  相似文献   

17.
BACKGROUND: beta 2 -Adrenergic receptor agonists can reduce the release of GM-CSF by human airway smooth muscle cells (HASMCs). These effects are considered anti-inflammatory and are ascribed to the activity of the (R)-enantiomer within the racemate of the agonist. However, the effect of the (S)-enantiomer on GM-CSF release, once thought to be inert, has not been extensively explored. Objective We hypothesized that the (S)-enantiomer may counter the effects of the (R)-enantiomer, potentially increasing GM-CSF release. Therefore, the effects of administration of individual and combined enantiomers on GM-CSF release were examined. METHODS: Cultured HASMCs were stimulated with IL-1beta, TNF-alpha, and IFN-gamma and treated with (R)-enantiomers and (S)-enantiomers of albuterol and formoterol, with and without propranolol and ICI-118,551, and in combination with dexamethasone. GM-CSF in the resulting conditioned media was assessed by ELISA. RESULTS: (R)-enantiomers significantly reduced GM-CSF release by as much as 41% ( P < .05), which was reversible with propranolol. In contrast, (S)-enantiomers significantly increased GM-CSF release by as much as 34% ( P < .05) over release with no drug, and by 25% to 40% ( P < .05) when added with (R)-enantiomers. The decremental effect of dexamethasone was amplified by (R)-enantiomers but inhibited by (S)-enantiomers. Both propranolol and ICI-118,551 alone increased GM-CSF release in a concentration-dependent fashion, similar to (S)-enantiomers. CONCLUSION: We conclude that GM-CSF release by HASMC is downregulated by (R)-enantiomers and enhanced by (S)-enantiomers. The reversal of (R)-enantiomer and dexamethasone effects by the (S)-enantiomer suggests suppression of their anti-inflammatory effects, perhaps through an antagonistic mechanism similar to propranolol.  相似文献   

18.
19.
Nitric oxide (NO) formed by the action of inducible form of nitric oxide synthase (iNOS), reacts with oxygen radical forming reactive nitrogen intermediate (RNI). NO and related RNI have been reported to possess antimycobacterial activity. Macrophages can inhibit the proliferation of Mycobacterium tuberculosis by producing NO. In murine models, the ability of macrophages to produce NO can determine the susceptibility of the host to M. tuberculosis and the virulence of M. tuberculosis. However, it is still not clear whether NO is involved in the defense mechanism against M. tuberculosis in humans. We have demonstrated that human peripheral blood mononuclear cells (PBMC) and airway epithelial cells can express iNOS mRNA expression and produce NO production in response to tubercle bacilli stimulation. Furthermore, H37Ra, avirulent strain of M. tuberculosis, induces a larger amount of NO in cultured PBMC than H37Rv, virulent strain, does. There was no difference in NO production between healthy volunteers and patients with tuberculosis. NO production in airway epithelial cells is closely related with IFN gamma concentration. The balance of stimulatory cytokines and inhibitory cytokines for NO production may play a critical role in the defense mechanism against M. tuberculosis considering that NO production is upregulated by IFN gamma, TNF alpha, and IL-1 beta and downregulated by IL-10 and TGF beta. The study of immune response to M. tuberculosis including NO production may give us a better understanding of the pathogenesis of tuberculosis.  相似文献   

20.
BACKGROUND: Inhaled pollutants were recently shown to be responsible for an increased incidence of airway allergic diseases, including asthma. A common feature of all forms of asthma is airway hyperresponsiveness. OBJECTIVE: Our purpose was to elucidate the effects of diesel exhaust particulate (DEP), one of the most prevalent inhaled pollutants, on airway responsiveness. METHODS: A/J and C57Bl/6 mice were used; the former are genetically predisposed to be hyperresponsive to acetylcholine, whereas the latter are not. DEP was administered intranasally for 2 weeks, after which pulmonary function was analyzed by whole-body plethysmography. RESULTS: Intranasal administration of DEP increased airway responsiveness to acetylcholine in both A/J and C57Bl/6 mice and induced displacement of ciliated epithelial cells by mucus-secreting Clara cells. The effect was mediated by M(3) muscarinic receptors. Acetylcholine-evoked bronchial constriction was reversed by administration of terbutaline, a beta(2)-adrenergic antagonist, which is also characteristic of human asthma. Intranasal administration of antibody raised against GM-CSF abolished DEP-evoked increases in airway responsiveness and Clara cell hyperplasia. The antibody raised against IL-4 also inhibited DEP-evoked increases in airway responsiveness. However, it was to a lesser extent compared with antibody against GM-CSF. In addition, DEP stimulated GM-CSF messenger RNA expression in the lung. CONCLUSION: DEP induces airway hyperresponsiveness by stimulating GM-CSF synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号